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Abstract: Accurately detecting retinal lesions for evaluating the progression of diabetic retinopathy (DR) is still a challenging and
laborious task in medical imaging. The disease often progresses without noticeable warning signs, making early detection
challenging. Most of the computer-aided diagnostic systems for DR grading utilize deep learning models without segmentation,
which is essential for obtaining accurate results. We developed a segmentation-assisted DR classification using a hybrid ResNet-
ViT model. The pipeline is well structured comprising lesion segmentation using modified MesU-Net, a hybrid feature extraction
using ResNet50 and vision transformer (ViT), feature fusion using canonical correlation analysis (CCA), and traditional machine
learning (ML) classifiers for DR grading. The segmentation of the lesion was initially performed in this DR classification method
using the modified MesU-Net model, which focuses on highlighting the retinal characteristics based on the lesion that are
essential for precisely identifying the stage of the disease. This integrated model was designed to extract significant features from
both normal and segmented retinal image data. For feature fusion, CCA was used to pinpoint and extract the most highly
correlated features from these distinct data views. These robustly correlated features were then passed to traditional machine
learning classifiers for DR grading. The proposed model was evaluated using the fine-grained annotated DR dataset for lesion
extraction and classification. The experimental results demonstrate that the ResNet-ViT network combined with a support vector
machine classifier delivers the best performance. The proposed method achieved an average accuracy of 97.6 % for DR grading,
highlighting its effectiveness in classifying DR severity.

Keywords: canonical correlation analysis (CCA); diabetic retinopathy; fine-grained annotated diabetic retinopathy (FGADR);
lesion segmentation; MesU-Net; ResNet50; ViT; ResNet-ViT

. INTRODUCTION

Diabetic retinopathy (DR) is a potentially blinding disorder associ-
ated with diabetes that is frequently observed in people with
untreated diabetes. Timely and accurate diagnosis plays a vital
role in effectively managing this condition. The advancement of
DR can be tracked by observing retinal abnormalities, including
exudates (EX), hemorrhages (HM), microaneurysms (MA), intra-
retinal microvascular abnormalities (IRMA), and neovascularization
(NV), as shown in Fig. 1. Based on the existence of particular retinal
characteristics, DR can be classified as mild, moderate, severe, or
proliferative [1]. The first stage, known as mild DR, is defined by the
presence of hemorrhages, microaneurysms, and exudates in the
retina. Moderate DR is distinguished by an increased number of
hemorrhages and microaneurysms, along with venous bleeding and
soft and hard exudates. The severe and proliferative stages of
advanced DR can cause significant vision loss or even blindness
if ignored. When DR is severe, the extent of retinal damage is
accentuated, while in proliferative DR, the growth of new, abnormal
blood vessels is highlighted. Over the years, the classification of DR
has changed significantly, moving away from traditional image
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processing approaches due to the development of advanced machine
learning and deep learning technologies [2]. DR classification
using deep learning methods [3] has proven to be far more precise
than typical machine learning techniques [4]. Recently introduced
transformer models [5] for DR classification use attention mecha-
nism to capture global contextual information from the retinal
images. The combined strength of CNN-Transformer [6] can be
used to capture local information using CNN and dependencies
among the features using a transformer to enhance the disease
grading of DR.

By segmenting specific regions of retinal images, we can
improve the precision of identifying and classifying different types
of retinopathy, leading to a more accurate analysis. Segmentation-
assisted classification in DR can be extremely difficult because of
inconsistent annotations and a lack of training data. A powerful
method for increasing the classification accuracy and precision of DR
grading is pre-segmentation classification, in which image segmen-
tation is employed as a precondition. Considering these findings, we
propose a novel segmentation-assisted DR grading model.

The following are the principal contributions of the developed
method:

o To develop a hybrid customized ResNet-ViT model for ex-
tracting features from both normal retinal images and seg-
mented lesions.
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Fig. 1. Abnormalities of human retina.

o To identify and fuse maximally correlated features: unique
features of segmented images and unique features of normal
images using canonical correlation analysis (CCA) to create a
more compact and informative retinal feature representation
suitable for DR classification.

o To analyze the performance of ML classifiers that use the
features from the fusion model and thus select the best model
for DR grading.

The rest of the paper is structured as follows. Section II
discusses related literature. Details of the datasets and methodology
used in this study are presented in Section III, and the outcome and
discussions are provided in Section IV. Section V concludes with
findings and recommendations for further research.

Il. LITERATURE REVIEW

Over the past decade, advancements in machine learning and deep
learning have significantly contributed to the development of
automated DR detection systems.

A. SEGMENTATION OF RETINAL LESIONS

Compared to conventional systems, deep learning gives superior
performance in lesion localization, delivering both higher accuracy
and speed. A compound scaling encoder—decoder network archi-
tecture was presented by Dewei Yi ef al. [7] with the goal of
improving the precision and effectiveness of microvascular lesion
segmentation. For HE, MA, EX, and SE segmentation, the model
obtained mean intersection over union (mloU) scores of 23.36 %
and 24.81 % on the test and validation sets, respectively. A semi-
supervised multitask learning method [8] has been proposed to
enhance DR segmentation performance by leveraging the widely
accessible datasets such as Kaggle-EyePACS, fine-grained anno-
tated diabetic retinopathy (FGADR), and IDRiD. A lesion-patch
multiple instance learning method (LpMIL) with semantic con-
straint adaptation (LpSCA) [9] was proposed for lesion identifica-
tion. Mean value of segmentation performance is 0.3963 on the
FGADR dataset and is 0.4374 on EyePACS dataset. To accomplish
precise and effective segmentation of different lesion types, BiSe-
NetV2 [10] employs a hybrid attention mechanism with ghost

feature mapping, successfully addressing issues such as poor
contrast and size variation. It performs better for MA lesions,
with an IoU score of 0.57.

B. CLASSIFICATION OF DR

Different classes of DR have been successfully identified through
the use of convolutional neural networks (CNNs) and other
cutting-edge deep learning methods. Nazih et al. [11] proposed
a ViT-based deep learning model that shows great promise for the
accurate assessment of retinopathy severity using the FGADR
dataset. The ViT model yielded identical results for its F1-score,
accuracy, precision, and recall, each measuring 0.825. The Area
Under the Curve (AUC) and specificity are 0.964 and 0.956,
respectively. In [12], an ensemble model for DR detection is
proposed that combines the ResNeXt and modified DenseNet101
architectures. The proposed method achieves an accuracy of
96.98% on the DIARETDBI dataset. In the case of multi-class
classification using the APTOS dataset, it attains an accuracy of
86.08%. A hybrid model utilizing SVMs, Random Forests, and
Decision Trees was created for DR detection [13]. Features were
extracted from the retinal images using three deep learning
models: Inception ResNetV2, DenseNet121, and MobileNetV2.
This model performed well on the APTOS dataset in both binary
(98.36%) and multi-class (95.50%) classification. With the use of
a decision tree-based ensemble learning algorithm, the research
[14] describes a unique approach for diagnosing DR based on the
gray-level intensity and texture characteristics retrieved from
fundus images. This approach makes use of the XGBoost clas-
sification algorithm, which produces an F-measure of 93.51%
and an accuracy of 94.20% on APTOS dataset. Ref. [15] intro-
duced an ensemble of ResNet50, InceptionV3, Xception, Den-
seNetl121, and DenseNet169, achieving an F1-score of 0.90 on
the Kaggle dataset.

C. SEGMENTATION-ASSISTED CLASSIFICATION

A reliable method for identifying DR is provided by a synergistic
approach that combines segmentation and classification. Desh-
mukh suggested a Unet-based segmentation technique [16] to
identify relevant lesions in retinal images and is then used to
extract statistical properties, such as area, skewness, mean, vari-
ance, kurtosis, entropy, and CNN features. The stated values for the
accuracy, specificity, and sensitivity were 91.42%, 92.54%, and
90.54%, respectively. To classify the severity of DR, the approach
[17] leverages the k-nearest neighbor technique after retinal image
segmentation using the U-Net model, which achieves an accuracy
of 82.96% on the Kaggle dataset. Ref. [18] provided a segmenta-
tion-assisted DR classification approach in which retinal NV was
segmented using a fully convolution network, and the CNN was
trained to classify DR.

The proposed system [19] consists of two interconnected deep
learning models: an updated YOLOv3 for detecting and localizing
DR lesions and CNNS512 for classifying the entire image into one of
five DR stages. This combined approach achieved an accuracy of
89%, a sensitivity of 89%, and a specificity of 97.3% on the DDR
dataset. In order to segment data and classify DR, the method [20]
integrates MobileNetv2 into the encoder portion of UNet and
EfficientNetB0. The system that was designed achieves test accu-
racy of 91.2%. A cross-attention fusion [21] of retinal images and
lesion map embedding increases the accuracy of DR detection.
This work introduces Swin-Unet for lesion segmentation and
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attention method to integrate both lesion maps and original images
for classification. This method uses FGADR and EyePAC dataset
for lesion segmentation. In this study, EyePAC dataset for DR
classification offers an accuracy of 94.6%. Ejaz et al. proposed a
hybrid CNN with CCA-based feature fusion for retinal fundus
analysis [30]. This method, validated on RFMiD 2.0 dataset,
achieved 93.39% accuracy for DR, demonstrating high robustness
and effectiveness.

D. FEATURE FUSION METHODS

Feature fusion, the process of combining data from various
sources or modalities, is a crucial technique in medical image
analysis, especially for complex diagnostic tasks like DR grading.
A fusion method [22] that integrates fundus retinal images,
optical coherence tomography, and electronic health records
within a long short-term memory network. This multimodal
fusion model, which makes use of local binary patterns (LBP),
produced an outstanding AUC of 0.99, improving the detection of
DR. By employing a two-stage preprocessing technique, Bibi
et al. [23] suggested a computationally efficient and successful
method for DR detection by extracting important diagnostic signs
from fundus images. Several feature descriptors, including LBP
and LTP, were employed, and it was shown that fused LBP and
LTP features had a high classification accuracy of 96.6% on a
local database when classified by a cubic kernel support vector
machine (SVM).

lll. METHODOLOGY

This section introduces a multi-stage segmentation-assisted clas-
sification system for DR grading, as illustrated in Fig. 2. The
overall framework is composed of three sections: 1) preprocessing
and segmentation, 2) feature extraction using customized ResNet-
ViT, and 3) feature fusion of normal retinal images and segmented
lesions using CCA and ML classifications.
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A. PREPROCESSING AND SEGMENTATION OF
RETINAL LESIONS

Effective preprocessing of input data is essential for performance
optimization in automated segmentation and classification applica-
tions. Segmentation is necessary to increase the accuracy of DR
grading systems. However, traditional segmentation-assisted clas-
sification methods require datasets that include annotated lesions in
addition to DR severity classifications. Although the classification
data lack annotations for specified labels, the segmentation data
lack lesion labels, which is addressed by the FGADR dataset [24],
and offers a useful resource. It contains labels for DR severity that
match the segmented lesions in images. FGADR is a large-scale,
elaborately annotated DR dataset containing approximately 2842
images. Of these, 1842 images contained fine-grained annotations
for specific lesions related to DR such as MA, HM, HE, SE, IRMA,
and NV. Dataset distribution with classification/grading of images
(0—No DR, 1—mild DR, 2—moderate DR, 3—severe DR, and
4—proliferative DR) in the segmentation set is shown in Fig. 3.

An anisotropic diffusion filter [25,26] was used in the images
to denoise without losing significant structural information. Stabil-
ity factor of 0.1 preserves edges and noise suppression. A medium
value of diffusion weight 20 was selected empirically upon testing
range 10-30 to preserve micro-lesion boundaries with diminished
background noise. Reduction of smoothing is regulated by iteration
count. Fifty iterations were found to be the most effective method
since they eliminated background artifacts while maintaining the
lesions’ morphological integrity. All the images were then resized
uniformly to 256 X 256 pixels to meet the model input require-
ments. Handling class imbalance was accomplished by only apply-
ing data augmentation to the minority classes. This method allowed
for increasing underrepresented category sample sizes, reducing
bias toward majority classes, and improving average model per-
formance. It involved horizontal and vertical flipping, and rotation
of up to 15 degrees. The models’ flexibility and generalization
abilities were then further enhanced by the use of data
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Fig. 3. Class-wise distribution of the dataset.

augmentation approaches such as vertical flips with a probability of
0.2, horizontal flips with a probability of 0.5, and rotations applied
with a probability of 0.3. The preprocessed and augmented images
were then fed into the subsequent segmentation and classification
models.

We developed a cascaded segmentation framework, which is
the modified version of MesU-Net [27], as shown in Fig. 4 for the
segmentation of retinal lesions. This architecture can be used to
segment lesions such as MA, HM, HE, SE, IRMA, and NV using
the FGADR dataset. By directly concatenating retrieved multi-
scale features with the encoder feature maps, this network explic-
itly captures multi-scale semantic information. This allows the
network to leverage both fine-grained details and broader contex-
tual cues simultaneously. The decoder pathway is incorporated
with a channel attention mechanism. This module assists the
network in automatically focusing on the most valuable feature
map channels in a dynamic manner. This ensures that pertinent
information is efficiently transferred and used for accurate seg-
mentation mask reconstruction, bridging semantic gaps between
the encoder and decoder pathways.

A key innovation lies in the cross-attention skip connection
mechanism to refine the output of the second U-Net. These gates
selectively channel relevant multi-scale features from MES-Net

encoder directly to the second U-Net’s decoder, guiding precise
pixel-level adjustments. The model uses a hybrid loss function that
combines binary cross-entropy and the Dice coefficient for opti-
mization. A fixed threshold of 0.5 was applied to generate binary
masks. The network’s final layer then applies a 1 X 1 convolution
and a sigmoid activation function to generate a single-channel
output mask, producing a refined probability map for lesion
presence.

B. FEATURE EXTRACTION USING ResNet-ViT
MODEL

Traditional CNN models [28] frequently have limitations in their
capacity to capture global contextual information and long-range
relationships within fundus images because of their relatively small
receptive fields. The strengths of both architectures are successfully
combined in hybrid CNN-ViT models, which also address CNNs’
inherent limitations in this area by incorporating ViTs’ capacity to
capture long-range contextual information and global dependen-
cies through self-attention mechanisms. A ResNet-ViT hybrid
architecture is used in the proposed approach to address this,
combining a pretrained CNN (ResNet50) with a customized
ViT model for thorough feature extraction.

The first step is to use the ResNet50 backbone to process the
input fundus images. With each channel focusing on identifying
distinct patterns such as edges, textures, or complex patterns, its
convolution layers effectively extract low level and hierarchical
spatial information. High-level abstract characteristics that sum-
marize the visual content are efficiently encoded by the ResNet50
output feature map, which is usually of shape (batch_size, 7, 7,
2048) for a 224 x 224 X 3 input image. The pretrained ResNet50
model was initially implemented with its layers frozen to support in
learning and minimize overfitting. The ResNet50 is frozen, so its
weights are not updated during training. This 4D feature map is
then converted into a sequence of learnable tokens suitable for the
transformer encoder.

Specifically, each of the 7x7 spatial locations in the ResNet50
feature map contributes a 2048-dimensional feature vector, result-
ing in 49 such vectors. These 4D feature maps are reshaped into a
3D sequence of tokens, which is then processed by a trio of Vision
Transformer blocks. The blocks are trainable, meaning their
weights will be updated during the training process. Within these
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Table I. Training details of proposed model
Hyper
parameter Modified MesU-Net ResNet-ViT
Learning Rate .0004 .0004
Optimizer Adam AdamW
Batch size 32 32
Early Stopping monitor=val-accuracy, monitor=val-
patience=5 accuracy,
patience=10
Seed 42 42
GPU NVIDIA Tesla V100,32 GB NVIDIA A100-
NVIDIA Tesla T4,16 GB SXM4,40 GB

blocks, multi-head self-attention mechanisms are employed to
capture global dependencies and long-range relationships across
all 49 tokens, enabling the model to focus on both localized and
broad contextual aspects. Nonlinear activation functions, such as
GELU, are employed to enhance feature representation. In addi-
tion, layer normalization is used in every block to guarantee
training stability. The features extracted by the final ViT block
represent a rich, contextualized representation of the retinal image.
These robust features are subsequently utilized for the classification
of DR. By fusing the effective local feature extraction capability of
CNN s with the global contextual awareness of ViTs, this integrated
approach provides strong performance.

Several pretrained CNN models and standalone ViT architec-
tures were used in our comparative studies for feature extraction
and classification. For feature extraction, the results clearly show
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that the ResNet-ViT network performed better than the other
models under investigation. The highest accuracy of 97.6% for
DR grading was attained by the ResNet-ViT when combined with
an SVM classifier. MesU-Net and ResNet-ViT training details are
shown in Table 1. The proposed model consists of 100.4 million
trainable parameters, requires approximately 3.4 GB of memory,
with the inference time is about 157 ms per image, making it
suitable for clinical applications. The effectiveness of the proposed
hybrid approach has been proven by its improved performance,
which further demonstrates promising for reliable and accurate DR
classification.

C. FEATURE FUSION AND ML CLASSIFICATION

The feature fusion module increases the accuracy of DR grading by
merging features from segmented lesions and normal retinal
images. Principal component analysis (PCA), which removes
redundant features while retaining the most informative ones, is
used to refine the features that ResNet-ViT extracts from normal
retinal images. Using these optimized features along with the
features derived from segmented lesions are fused using the
CCA method [29] as shown in Fig. 5. The purpose of this method
is to provide a more robust and selective feature representation for
DR grading by carefully utilizing the complementary information
found in both modalities. CCA is used as a feature-level fusion
technique because it captures correlations between modalities and
generates maximally correlated projections. The segmented dataset
features provide a local perspective, whereas the normal dataset
features provide a global context. By connecting these related
elements of information, it produces a more robust representation
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Algorithm 1: Feature Fusion Using CCA

1. Initialize PCA model P with kp components.
P <« PCA(n_components =kp)
2. Reduce the dimensionality of Xn':
Xn" « P.fit_transform(Xn')
3. Initialize CCA model C with kc components.
C < CCA(n_components = kc)
4. Fit CCA model on Xs' and Xn":C.fit(Xs', Xn")
5. Transform features into canonical variates:
U « C.transform(Xs'),V «C.transform(Xn'")
6. Extract unique features:
Uuniq from Xs', Vuniq from Xn"
7. Concatenate canonical and unique features:
F <« [U 1V | Uuniq | Vuniq]

than either feature set could on its own. It identifies the components
that are most associated and combines them together. Additionally,
special characteristics from both sets are incorporated to the final
fused set. In this paper, CCA was utilized for feature fusion since it
efficiently brings two different feature sets into alignment within a
common subspace where their correlation is maximized. In this
way, corresponding complementary information from both the
original retinal images and lesion-based features can be utilized
jointly, and redundancy is minimized while dimensionality is
reduced relative to the use of a simple concatenation. Even though
CCA is a linear method, in this paper, it is used on ResNet-ViT-
extracted features, which are themselves already nonlinear and
highly expressive. This implies that the initial conversions have
already abstracted out intricate relationships in the data, and CCA is
primarily concerned with correlating and combining the two
representations in a correlated subspace [30]. This is especially
relevant when dealing with high-dimensional features from deep
networks, since a complicated, nonlinear fusion layer would easily
overfit to the training set. So, the linearity of CCA does not really
restrict its usefulness here, since it acts upon nonlinear embeddings
instead of raw image data.

The feature fusion algorithm using CCA is described in
Algorithm 1. To choose the optimal number of components for
CCA, a cross-validation approach was used to prevent overfitting.
The model was trained using different component settings (16, 32,
and 64) on the training set, and its performance was assessed on a
separate validation set by computing the canonical correlations.
Among these, 64 components were chosen, as this configuration
yielded the highest generalization capability to unseen data. Fused
features are given to various ML classifiers such as Random Forest,
K-Nearest Neighbour, XGBoost, and SVM. Among these, SVM

Table Il. Ablation study of fusion techniques for diabetic
retinopathy classification using SVM

Accuracy of fused set

SI.No Fusion techniques (ResNet-ViT + SVM)
1. Concatenation 93%
2. Gated Fusion 79%
3. Max. Fusion 88.3%
4, Cross Attention 77%
5. Canonical Correlation Analysis 97.6%

provides a promising result that outperforms traditional methods
and provides a more accurate and reliable diagnosis of DR. The
radial basis function kernel was employed in the SVM model,
which relied on the regularization parameter’s default value.
Ablation study of various fusion techniques along with an SVM
classifier is shown in Table II.

IV. RESULTS & DISCUSSION

This section discusses in detail the experimental evaluation models
and a segmentation-assisted classification approach. Moreover, the
effectiveness of fusing features from both segmented and normal
images is assessed using machine learning classifiers.

A. SEGMENTATION OF RETINAL LESIONS

Retinal image segmentation has been done in this study using deep
neural networks like the modified MesU-Net, which combines
MES-Net and U-Net. Segmentation result of modified MesU-Net is
presented in Fig. 6. Performance indicators of these models are
presented in Table III. Model performance was measured with the
Dice coefficient, IoU, sensitivity, specificity, and pixel-level accu-
racy. The ablation study demonstrated in Table IV shows that the
modifications were crucial for enhancing the model’s ability to
concentrate on key features and achieve precise segmentation. The
segmented image masks, which are the segmentation model’s
output, are then fed into the ResNet-ViT model for feature extrac-
tion, demonstrating a multistage pipeline in which segmentation
refines inputs for further analysis. This model shows an IoU score
of 0.662 and a dice coefficient of 0.797 for exudates detection.
There is still a dearth of training data for NV and IRMA. Low IoU
scores and other subpar results are the result of the model’s inability
to correctly learn the complex patterns and variations in IRMA and
NV with small sample sizes. MesU-Net with an attention mecha-
nism and inter-stage fusion achieved a mean IoU of 0.63, while the
variant with only the attention mechanism also performed com-
petitively with a mean IoU of 0.62.

B. SEGMENTATION-ASSISTED DR GRADING

Segmented images were provided to the pretrained models for
classification, resulting in higher accuracy compared with classifi-
cation without segmentation. The performance of the pretrained
models with and without segmentation was assessed, and the
precision, recall, accuracy, and F1 score of each model were
computed and are shown in Table V. Among all models, ResNet50
performed better than the others. To classify both normal and
segmented retinal images, transformer-based models like ViT and
ResNet-ViT were used in addition to pretrained networks. After
feature extraction using deep learning models such as ResNet50
and ResNet-ViT, DR grading was done using conventional
machine learning classifiers.

Comparison of classification accuracy of normal and seg-
mented images is provided in Table VI. Segmentation-assisted
classification strategies provide an improvement of approximately
5% in the classification accuracy of DR without segmentation. The
proposed grading method for DR includes a lesion segmentation
using the modified MesU-Net and feature extraction using the
ResNet-ViT model. Both normal retinal images and segmented
lesions were fed into the ResNet-ViT model to extract features from
each image. The features obtained from the normal images were
reduced using PCA with a variance of 90%. The reduced features

(Ahead of Print)



Original
Image

Ground
Truth

Segmented
Output

Segmentation-Assisted Diabetic Retinopathy Classification 7

Fig. 6. Segmented lesions across different grades of diabetic retinopathy.

Table lll. Performance metrics of different segmentation models
MA HM

Model AC Dice loU SE SP AC Dice loU SE SP
U-Net 0.790 0.592 0.424 0.793 0.892 0.899 0.660 0.493 0.901 0.903
Mes-Net 0.846 0.653 0.485 0.853 0.891 0.902 0.712 0.553 0.902 0.903
MesU-Net 0.877 0.705 0.514 0.899 0.903 0.923 0.743 0.591 0.935 0.946
Modified MesU-Net 0.907 0.765 0.619 0.917 0.926 0.956 0.776 0.634 0.956 0.967
Model HE SE

AC Dice IoU SE SP AC Dice IoU SE SP
U-Net 0.897 0.628 0.458 0.921 0.943 0.911 0.699 0.537 0.917 0.922
Mes-Net 0.924 0.732 0.577 0.943 0.967 0.956 0.731 0.576 0.961 0.973
MesU-Net 0.947 0.763 0.617 0.946 0.959 0.966 0.763 0.617 0.976 0.984
Modified MesU-Net 0.968 0.796 0.661 0.969 0.971 0.981 0.797 0.662 0.963 0.968
Model IRMA NV

AC Dice IoU SE SP AC Dice IoU SE SP
U-Net 0.785 0.635 0.465 0.798 0.813 0.719 0.693 0.531 0.812 0.834
Mes-Net 0.802 0.693 0.530 0.841 0.852 0.802 0.718 0.560 0.818 0.867
MesU-Net 0.895 0.724 0.577 0.899 0.902 0.893 0.732 0.590 0.891 0.895
Modified MesU-Net 0.926 0.743 0.591 0.927 0.929 0.917 0.751 0.601 0.910 0.923

were combined with the extracted features of the segmented lesions
using different fusion strategies, such as concatenation, attention-
based fusion, recursive elimination, and CCA. Among them, CCA
performed well, with the number of components set to 64.

In this fusion, after transformation of the reduced normal and
segmented retinal feature sets are concatenated, a fused set is
created. These combined features were divided into 60% for
training, 20% for testing, and 20% for validation, and fed into
various machine learning classifiers such as KNN, Random Forest,
XGBoost, and SVM for DR grading. For feature fusion, segmen-
tation masks were carefully created using just the training dataset

in order to prevent data leaks and to give a precise representation
of model performance based on the model’s capacity to
generalize new data. This methodology, which integrates lesion
segmentation with classification, proved to be effective in terms
of performance matrices. The advantages of multi-source informa-
tion were demonstrated by comparing the classification accuracy
of the SVM classifier across three feature inputs: segmented
lesions, normal images, and a combination of both (fused
features).

A comparison of the accuracies of these three different features
is shown Fig. 7. We evaluated the performance of several popular
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Table IV. Ablation study of MesU-Net with AG and fusion enhancements.

MA HM HE SE IRMA NV mean
Model Dice loU Dice IloU Dice IloU Dice IloU Dice IloU Dice IoU loU
MesU-Net+Inter stage fusion 073 058 078 060 075 066 077 062 073 057 073 0.8 0.60
MesU-Net+AG 076 061 077 063 075 065 08 066 074 058 075 0.60 0.62
MesU-Net+AG + Inter stage fusion  0.77 0.62 0.78 0.63 0.80 066 080 066 074 060 075 0.60 0.63
Table V. Performance metrics across models for DR feature grading

FGADR Dataset without Segmentation
Without augmentation With augmentation
CNN Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
VGG16 68.1 0.68 0.68 0.68 71.3 0.72 0.71 0.72
Efficient Net B5 67.9 0.68 0.67 0.68 69.5 0.69 0.70 0.69
Inception V3 67.1 0.67 0.67 0.67 69.1 0.68 0.69 0.70
Inception ResNet V2 70.8 0.71 0.70 0.71 72.5 0.72 0.71 0.72
DenseNet121 71.5 0.72 0.71 0.72 73.7 0.73 0.72 0.73
ResNet 50 72.9 0.72 0.72 0.73 75.6 0.75 0.76 0.76
FGADR Dataset with Segmentation

Without augmentation With augmentation
CNN Accuracy Precision Recall F1-score Accuracy Precision Recall F1-score
VGG16 72.9 0.72 0.71 0.72 74.9 0.75 0.74 0.73
Efficient Net B5 70.8 0.70 0.71 0.71 71.8 0.70 0.71 0.72
Inception V3 68.4 0.68 0.68 0.68 69.9 0.69 0.70 0.69
Inception ResNet V2 72.1 0.72 0.71 0.72 73.6 0.73 0.72 0.74
DenseNet121 74.4 0.74 0.75 0.75 76.3 0.75 0.76 0.76
ResNet 50 77.4 0.77 0.76 0.77 79.5 0.79 0.79 0.79
Table VI. Comparison of classification accuracy of normal and e
segmented images 97.6

100 89.8
Normal image Segmented BW

Model accuracy image accuracy ’s
Augmentation No Yes No Yes z
ResNet50 72.9 % 75.6% 774 % 79.5% g 50
ViT 65.4% 68.9% 69.9% 71.2%
ResNet-ViT 68.7% 70.2% 72.2% 73.4% -
ResNet50 + SVM 74.8 % 77.4% 78.1 % 79.4%
ResNet-ViT + SVM 79.9% 82.1 % 87.3% 89.8%

machine learning algorithms, such as Random Forest, KNN,
XGBoost, and SVM, in the classification of the proposed study
using the dataset with fused features. Each of these classifiers was
trained using the fused features. Also accuracy, precision, recall,
and F1-score for each class from class 0 to class 4 are calculated. A
fivefold cross-validation was carried out on the baseline and
proposed models, with the outcomes summarized in Table VII.
A focused ablation study that assesses PCA and CCA’s distinct
contributions to the proposed approach is shown in Table VIII. The
statistical significance of the performance improvements was evalu-
ated using paired t-tests, and the corresponding results are reported in

Normal Features Segmented Features Fused Features

Type of Feature

Fig. 7. Performance of the proposed model in terms of classification
accuracy.

Table IX. The SVM classifier achieved consistently high F1-scores
across multiple classes, with no DR (0.99), mild DR (0.98), and
proliferative DR (0.98), indicating strong classification performance.
It implies that the learning mechanism and features of the SVM are
ideal for modeling the patterns associated with these particular
classes. The precision and recall of moderate and severe cases
were slightly lower than those of the other classes. This could occur
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Table VII. Performance of segmentation-assisted classification of DR

Random Forest (RF) K-Nearest Neighbors (KNN)
Class Accuracy Precision Recall F1-score Class Accuracy Precision Recall F1-score
0 0.98+0.24 0.98 +0.23 0.98 +0.23 0.98+0.24 0 0.95+0.07 0.95+0.34 0.96 +0.66 0.95+0.34
1 0.96 £0.64 0.95+0.33 0.98+0.24 0.96 £ 0.66 1 0.92+0.09 0.86 +0.05 0.98+£0.24 0.91+0.31
2 0.89 +0.47 0.97£0.27 0.81+0.24 0.88 +0.45 2 0.89+0.48 091+0.34 0.90+0.43 0.91+0.32
3 0.89+0.45 0.89+0.47 0.89+0.48 0.89+0.47 3 0.93+0.42 0.93+0.44 0.93+0.43 0.93+0.43
4 0.95+0.25 0.93+0.43 0.98+0.24 0.95+0.34 4 0.94+0.34 0.95+0.33 0.94+0.34 0.94+0.38

XGBoost Support Vector Machine (SVM)

Class Accuracy Precision Recall F1-score Class Accuracy Precision Recall F1-score
0 0.97+0.28 0.96 +0.55 0.99+0.11 0.97+0.26 0 0.97+0.26 0.98+0.02 0.99+0.07 0.99+0.11
1 0.97+0.29 0.97+0.29 0.97+0.26 0.97+0.27 1 0.97+0.27 0.98+0.21 0.97+0.31 0.98 +£0.22
2 0.85+0.23 0.93+£0.42 0.78£0.17 0.85+0.23 2 0.96 £ 0.63 0.96 £0.64 0.95+0.42 0.96 £0.62
3 0.80+0.20 0.91+0.31 0.71+0.18 0.80+0.21 3 0.90+0.31 0.91+0.02 0.90+0.31 0.90+0.31
4 0.93+0.42 091+0.32 0.96 +£0.63 0.93+0.39 4 0.98 £0.23 0.97+0.27 0.98+0.23 0.98+0.24
Table VIIl.  Ablation study of classification of DR using feature Learming Corve VM) wih Crose Va iatin
fusion pipeline e
Model PCA CCA Accuracy
ResNet50 No No 79.5% o
ViT No No 71.2% 094
ResNet-ViT No No 73.4% £ oo
ResNet50 + SVM No Yes 83.6% 050
ResNet-ViT + SVM No Yes 93.1%
ResNet50 + SVM Yes Yes 87.4% %
ResNet-ViT + SVM Yes Yes 97.6% 856

Table IX. T-test result of baseline and proposed model

Model P-value T-statistic
ResNet-ViT + CCA + SVM, 0.00000013 —17.32219
ResNet-ViT + SVM

ResNet-ViT, ResNet-ViT + SVM 0.0000002 —22.313278

because the lesion characteristics of these stages fluctuate slightly,
which can cause feature overlap and make differentiation more
challenging. In spite of these difficulties, the SVM classifier per-
formed exceptionally well, achieving micro average accuracy of
97.6% and a kappa score of 0.963. The learning curve of SVM
classifier is presented in Fig. 8.

Among these classifiers, SVM performed well. Due to the
class imbalance, the model’s performance was also evaluated using
macro-averaging. This approach revealed strong, consistent per-
formance across all classes, achieving a macro-averaged precision
of 0.967, a recall of 0.968, and an F1-score of 0.967.

High AUC values (which range from 0.90 to 0.99 for all
classes in the Receiver Operating Characteristic (ROC) analysis)
support this finding and show how effectively the model distin-
guishes between different DR severity levels. ROC curve for macro
and micro AUC is presented in Fig. 9. Per class ROC curve and
confusion matrix are also presented in Fig. 10 and Fig. 11,
respectively. The most notable performance limitation of the model

—&— Training score
—8— Cross-validation score

200 400 600 800 1000 1200 1400 1600
Training examples

Fig. 8. Learning curve of the SVM model trained on fused features.
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Fig. 9. ROC curves illustrating macro and micro averaged AUC.
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Receiver Operating Characteristic (One-vs-Rest)
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Fig. 10. Class-wise ROC analysis of the SVM model.

True Label

0 1 2 3 4
Predicted Label

Fig. 11. Confusion matrix illustrating the performance of the proposed
model.

is its compromised discriminative capability between moderate
(Class 2) and severe (Class 3) DR. The confusion matrix sub-
stantiates this specific failure mode, showing that nine true severe
cases were misclassified as moderate. Furthermore, two severe
cases were incorrectly downgraded to mild (Class 1). The perfor-
mance comparison of proposed method with various state-of-the-
art methods is presented in Table X.

V. CONCLUSION AND FUTURE WORK

This study combines deep learning advancements with segmenta-
tion-assisted preprocessing to propose an innovative method for

Table X. Comparison of recent methods on segmentation-
assisted classification using FGADR

Segmentation model Classification Accuracy
Swin U-Net [21] Swin Transformer 94.6%
Multilabel Segmentation, Attention-based 87.2%
S-Net [32] Classifier, G-Net

U-Net [16] SVM 95.1%
ResNet+U-Net [2] Random Forest 97.5%
FCN [31] CNN 87.7%
CNN [30] Ensemble ML models 93.39%

diagnosing the degree of DR. Six different types of retinal lesions
were precisely segmented using the innovative modified MesU-Net
architecture, enabling a thorough examination of retinal features
using the FGADR dataset. This approach leveraged the capabilities
of vision transformers to capture complex dependencies in retinal
fundus images by using the hybrid ResNet-ViT architecture.
Normal and segmented features were fused using the CCA fusion
method. A variety of machine learning classifiers were employed to
examine the fused features, which combined segmented lesions
and normal retinal images. In terms of accuracy and dependability,
this method not only outperformed current approaches but also
demonstrated the benefits of integrating segmentation techniques
with innovative neural architectures for medical imaging tasks.
Using improved feature fusion and selection techniques in the
future can open up even more possibilities and lead to more
accurate and scalable DR classification solutions.

A more thorough examination of preprocessing methods like
color normalization and lighting correction, as well as the incor-
poration of interpretability assessments like Grad-Class Activation
Map visualizations to optimize the pipeline, will be part of future
development. Because the model was trained just on the FGADR
dataset, its clinical application is restricted. To verify the model’s
capacity to adapt to domain change and generalize to real-world
situations, external validation on a variety of patient groups and
imaging devices is required.
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