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Abstract: This research addresses the critical challenge of cybersecurity in healthcare by evaluating the effectiveness of machine
learning (ML) and deep learning (DL) models in identifying and mitigating five significant cybersecurity threats: distributed
denial-of-service (DDoS), man-in-the-middle (MitM), malware, phishing, and SQL injection. The study integrates a secure
hardware–software architecture utilizing WireGuard, a lightweight, modern VPN protocol that establishes encrypted tunnels
between network nodes, ensuring robust data integrity, confidentiality, and authenticated communication. Two ML models,
support vector machine and random forest, and four DL architectures, dense neural networks (DNNs), convolutional neural
networks-long short-term memory (CNN-LSTM), and LSTM-gated recurrent unit (LSTM-GRU), are systematically trained and
tested using publicly available datasets specific to each threat category. The experimental outcomes demonstrate exceptional
detection capabilities for structured network threats, with DNN and CNN-LSTM achieving accuracies and F1-scores from 95%
to 97.6% for DDoS and MitM threats. In malware classification, the performance of DNN and CNN maintains precision and
recall above 94%. Phishing and SQL injection attacks have lower classification scores of around 82% for most models. Visual
analytics, including accuracy, loss plots, and confusion matrices, provide valuable insights into the convergence behaviors and
sensitivity of different architectures, highlighting the strong generalization of DNN and variability in recurrent models. Overall,
this research highlights the substantial potential of DL, combined with secure communication technologies like WireGuard, in
enhancing healthcare cybersecurity, while also identifying areas for further development and optimization.
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I. INTRODUCTION
Today, digital innovations [1] are changing healthcare by improv-
ing care quality, handling big data [2], streamlining documentation
workflows [3], and intensifying security challenges [4] as systems
and data scale. More frequent, sophisticated cyber threats [5]
endanger the confidentiality and availability of healthcare
information.

Healthcare organizations handle extensive volumes of sensi-
tive data, such as personal information, medical histories, and
diagnostic results, which makes them attractive targets for cyber-
criminals. Data leaks of confidential information can carry serious
consequences for organizations.

Healthcare facilities manage vast amounts of confidential
information, including personal details, medical histories, and
diagnostic records, making them prime targets for cybercriminals.
Data breaches and unauthorized access to medical or financial
records can lead to severe consequences, including service dis-
ruptions, economic loss, and compromised patient safety.

Among the most critical cybersecurity threats in this domain
are distributed denial-of-service (DDoS) [6], man-in-the-middle
(MitM) [7], malware [8], phishing [9], and SQL injections [10].
DDoS attacks overwhelm healthcare networks with illegitimate
traffic, rendering systems inaccessible and delaying critical proce-
dures. For instance, a 2019 DDoS attack on a US healthcare
provider caused widespread outages, disrupting patient appoint-
ments and communications.

MitM attacks intercept communications between healthcare
professionals and medical devices, enabling unauthorized access to
sensitive information [11]. For example, attackers may capture data
transmitted from medical equipment to electronic health record
(EHR) systems, leading to data breaches or manipulation. Mal-
ware, such as ransomware, encrypts critical data and demands
payment for access restoration [12]. A notable case is the 2017
WannaCry attack, which disrupted healthcare services globally and
endangered patient safety.

Phishing attacks deceive healthcare staff via fraudulent emails
or messages, tricking them into revealing credentials or clicking
malicious links [13]. For instance, a phishing email impersonating
a medical supplier could prompt staff to share login information,
exposing the network to further threats. SQL injection exploits
application vulnerabilities by injecting malicious SQL code,Corresponding author: Olga Ussatova (e-mail: olgaussatova@gmail.com).
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allowing attackers to access or alter databases. A poorly secured
hospital website, for example, could be exploited to extract confi-
dential patient records [14].

Given the severity and evolving nature of these threats,
healthcare institutions must adopt advanced tools capable of
detecting and preventing real-time cyberattacks. The traditional
methods are mostly not effective against complex types of attacks
and threats. Therefore, machine learning (ML) [15] and deep
learning (DL) [16] approaches have become strong cybersecurity
tools in healthcare environments.

These technologies offer several key benefits:

−Detecting threats and initiating immediate countermea-
sures [17].

−Adaptability to emerging threats: Continuously learning and
evolving to recognize novel attack patterns [18].

−Automation and reduced human error:Minimizing reliance
on human intervention and decreasing error rates [19].

− Scalability: Effectively handling and securing large volumes
of sensitive patient data [20].

−Detection of hidden threats:Uncovering subtle or previously
undetected threats that traditional systems might miss [21].

As cyber threats grow in complexity, integrating ML and DL
models into healthcare cybersecurity frameworks becomes an
essential part of the systems.

In addition to software-based defenses, robust integration of
both hardware and software is crucial for establishing a secure
healthcare IT infrastructure. Therefore, a comprehensive hard-
ware–software architecture was developed to ensure secure authen-
tication, establish encrypted communication channels, and
integrate flow encryption keys directly into hardware components.
This system addresses several critical security challenges, includ-
ing the protection of communication channels through crypto-
graphic methods, secure information transfer within isolated
networks, effective routing of network participants, and the secure
transmission of cryptographic keys. The routing of cryptographic
keys was implemented using WireGuard, a modern VPN protocol
known for its simplicity and high performance. WireGuard estab-
lishes tunnel interfaces (e.g., wg0 and wg1) on top of existing
network interfaces, which are configured using the ifconfig, ip, and
route tools. Tunnel behavior is controlled using the wg tool, which
associates IP addresses with public keys and remote endpoints to
manage communication between nodes securely. This configura-
tion provides a lightweight and secure foundation for encrypted
communication in healthcare systems.

In this study, we combine these architectural and crypto-
graphic advancements with ML and DL models for detecting cyber
threats in healthcare. Among ML models, the support vector
machine (SVM) and random forest (RF) are taken for the experi-
ments, along with a convolutional neural network (CNN), a dense
neural network (DNN), a hybrid CNN-long short-term memory
(CNN-LSTM) network, and an LSTM-gated recurrent unit
(LSTM-GRU) network. Other parts of the paper include a related
methodology, an implemented approach, a description of experi-
mental results, and a conclusion of the whole research work.

II. RELATED WORKS
The presented cyber threats are covered in many different research
works. The paper [22] introduces an advanced intrusion detection
system (IDS) by proposing an improved variant of the LSTM

model designed to detect DDoS attacks with the use of the model
which integrates convolutional, bidirectional LSTM (Bi-LSTM),
and bidirectional gated recurrent unit (Bi-GRU) layers, allowing it
to effectively capture both temporal and spatial features from
Internet of Things (IoT) network traffic. The results demonstrate
exceptional accuracy and F1-scores of 0.95 and an Area Under the
Curve Receiver Operating Characteristic (AUC-ROC) score
of 0.99.

The main research results of the paper [23] indicate that MitM
attacks can be effectively detected with the use of LSTM, SVM, and
RF models. The experiments demonstrate that RF has the highest
accuracy score of 0.94, while LSTM is also close, reaching a score of
0.92. Only the SVM model’s accuracy score is below 0.90, achiev-
ing a score of 0.86. The results demonstrate enhanced robustness in
handling noisy or incomplete data, as well as strong generalization
capabilities to unseen scenarios. Furthermore, comparative analysis
confirms that the proposed models improved predictive quality,
making them suitable for practical, real-world applications.

The main research results of the paper [24] indicate the
implementation of Naïve Bayes (NB), k-nearest neighbors
(KNN), and CNN in the detection of MitM attacks in the IoT
environment. The comparison of models confirms a reduction of
computational complexity while maintaining the high predictive
quality. NB, KNN, and CNN achieve accuracy scores of 0.94, 0.97,
and 0.99, respectively.

The study [25] presents comprehensive research on develop-
ing a novel DL AutoEncoder model with XGBoost for detecting
and preventing MitM in IoT networks. The research thoroughly
describes the limitations of traditional IDSs, which often struggle
with high-dimensional data, evolving attack strategies, and real-
time constraints. Applied to the intrusion detection dataset, the
model achieved accuracy, precision, recall, and F1-scores of 0.97,
0.96, 0.95, and 0.96, outperforming the standard models, such as
RF, SVM, and standard XGBoost. The approach also demonstrated
a superior AUC-ROC value of 0.97, indicating robust discrimina-
tion between benign and malicious traffic.

The study [26] describes the TuneDroid technique for detect-
ing Android malware. It explicitly addresses three prevailing
challenges: obfuscation, accuracy detection, and computational
efficiency in the presented domain. The model was evaluated on
a dataset with 3000 benign and 3000 malicious Android applica-
tions. TuneDroid provided an opportunity to achieve an accuracy
score of 0.99. This approach demonstrates significant improve-
ments over traditional static analysis methods, highlighting the
potential of dynamic tuning in malware detection.

The research in the paper [27] focuses on the rising threat of
phishing websites by leveraging ML and DL models within cloud
and fog computing contexts. The study introduces a new dataset
containing benign and malicious traffic and employs RF and SVM
models. The SVM model reached an accuracy score of 98%.

The research [28] presents a comprehensive evaluation of
phishing email detection models with 14 ML and DL algorithms
across 10 datasets, including a newly created merged dataset. The
datasets range from classic corpora like Enron and SpamAssassin
to specialized sets such as Nazario and Nigerian scams, ensuring
diversity in phishing patterns. For ML models, Term Frequency –

Inverse Document Frequency (TF-IDF) vectorization and prepro-
cessing were applied, while DL models were trained on raw text to
capture semantic nuances. The results showed that BERT and
RoBERTa transformer models achieved the highest scores of 0.98
and 0.99, respectively. These models maintained a strong preci-
sion–recall balance, crucial for reducing both false positives and
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false negatives. In contrast, graph convolutional networks per-
formed poorly because email text is linear. AmongMLmodels, the
SGD Classifier delivered the best overall results with 0.98
average accuracy, showing adaptability across datasets. The study
proved the transformer-based models to be the most effective for
phishing detection, enhancing resilience against evolving phishing
attacks.

The paper [29] analyzes the rapid increase in web application
attacks, both in frequency and complexity. The proliferation of
these attacks is primarily fueled by the extensive data available
online, which has become highly attractive to cybercriminals.
Structured Query Language Injection (SQLi) attacks are especially
prevalent and pose severe risks to the information in various
databases. In this paper, the classification of SQLi was implemen-
ted with the LSTM model. It was tested across three datasets and
got accuracy scores from 0.98 to 0.99.

The research works [30–33] implemented two innovative
CNN models: SQL Injection-attack Detection Network-1 (SID-
Net-1) and SQL Injection-attack Detection Network-2 (SIDNet-2).
These models are specifically designed to classify and detect SQLi,
thereby enhancing the security of web applications. In the classifi-
cation results, SIDNet-1 and SIDNet-2 achieved remarkable accu-
racy scores of 0.97 and 0.98, respectively, on the SQLIV2.

Beyond the evaluated threat models, a broader and often
under-examined concern was the adversarial vulnerability gap,
referring to the discrepancy between threats considered during
evaluation and the full spectrum of potential adversarial manipula-
tions that neural networks may face in practice. While the neigh-
borhood expectation attribution attack (NEAA) demonstrates
strong transferability and effectively disrupts intrinsic feature
representations across models, an inherent limitation remains in
measuring robustness solely against tested attacks. This gap high-
lights a critical risk that is defined by defenses and robustness
strategies, which may appear effective under restricted or prede-
fined attack settings but remain susceptible to unforeseen adver-
sarial strategies under different assumptions [34].

Another case is related to the Multi-Feature Attention Attack
(MFAA), which demonstrates effectiveness in improving transfer-
ability through multilayer feature fusion and ensemble attention
mechanisms. However, it implicitly exposes a structural weakness
in deep neural networks: their reliance on overlapping, model-
agnostic feature hierarchies that can be systematically manipulated.
By exploiting cross-layer semantic consistency and disrupting
shared category-related representations, MFAA reveals that even
advanced models with defensive strategies remain susceptible
when adversarial signals align with naturally learned semantics.
This highlights a fundamental concern: robustness evaluations that
focus only on known threat models or architectures may underes-
timate real-world susceptibility to novel, feature-aware adversarial
strategies [35].

III. METHODOLOGY
This research employs an ML- and DL-based approach to classify
five major cybersecurity threats: DDoS, MitM, malware, phishing,
and SQL injection. The methodology includes a list of phases:
dataset collection, data preprocessing and normalization, feature
selection/extraction, model training, and performance evaluation.
All these steps allow the support of the consistency and heteroge-
neity of datasets.

While this work primarily focuses on DL-based threat detec-
tion, secure data handling is crucial during both the training and

deployment stages in sensitive environments, such as healthcare.
Hardware–software architecture is implemented to support
secure communication channels and facilitate the routing of
cryptographic keys. The system leverages WireGuard, a light-
weight and modern VPN protocol, to establish encrypted tunnels
between network nodes. These secure interfaces (e.g., wg0 and
wg1) operate on top of conventional interfaces and are configured
via standard tools such as ifconfig, ip, and route. WireGuard
associates each peer with a public key and an internal IP address,
allowing only authenticated devices to exchange data. The wg
utility facilitates real-time configuration and monitoring of the
encrypted channels. This infrastructure complements the ML
and DL models by safeguarding data integrity, confidentiality,
and compliance during experimentation and operational deploy-
ment. This setup provides a lightweight, scalable, and cryptograph-
ically sound communication framework that complements the DL
models by ensuring data integrity and confidentiality during both
model training and real-time operation. The entire framework is
illustrated in Fig. 1.

This secure architecture provides an opportunity for protected
data transmission; however, subsequent steps focus on deploying a
protection system against cyber threats using deep learning models.
The steps toward the preparation of these models are described in
the next subsections.

A. DATASETS

To train efficient DL models for detecting DDoS, MitM, malware,
phishing, and SQL injection cyber threats, five advanced datasets
are compiled for each of these categories. These datasets are
collected from different publicly available sources.

The DDoS dataset (https://www.kaggle.com/code/
taruntambrahalli/ddos-nbc) is a comprehensive collection of vari-
ous attacks compiled from CICDoS2016, CICIDS2017, and CIC-
IDS2018 sources. These datasets are created in different years
using diverse DDoS traffic generation tools. The extracted DDoS
flows are then combined with benign traffic, which is separately
extracted from the same original datasets, to create a single, unified
dataset. The features of the dataset contain comprehensive infor-
mation about IP addresses, ports, sizes of data packets, etc. The
whole dataset includes 6373397 elements and 84 features. The
whole DDoS dataset is shown in Fig. 2.

Fig. 1. The system’s infrastructure.
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TheMitM dataset (https://www.kaggle.com/datasets/ymirsky/
network-attack-dataset-kitsune/data) is also a complex collection
of network attack datasets that have been captured from network
IoT devices. It has various types of attacks, such as ActiveWiretap,
OS Scan, SSDP Flood, Mirai Botnet, and others. The entire dataset
comprises both benign and malicious traffic, enabling the devel-
opment of models that can distinguish between normal and attack
behaviors. Each network packet is represented by features obtained
by the Kitsune Network Intrusion Detection System (NIDS), which
provides a more detailed analysis and model training. The MitM
dataset comprises 2504267 elements and 115 features, as shown
in Fig. 3.

The malware dataset (https://github.com/saurabh48782/
Malware_Classification/blob/master/MalwareData.csv) is de-
signed for binary classification of malicious and benign objects.
This dataset is adaptable for different DL algorithms for malware
detection. Malicious software poses significant threats to informa-
tion systems. There is a large variety of malware, such as worms,
viruses, trojans, and others. The entire dataset comprises 216351
malware elements and 53 features. It is shown in Fig. 4.

The phishing dataset (https://www.kaggle.com/datasets/
taruntiwarihp/phishing-site-urls) is a substantial resource for devel-
oping and testingML and DLmodels to detect phishing websites. It
comprises approximately 549346 elements, each consisting of a
URL and a corresponding label indicating whether the site is
legitimate or a phishing attempt. The dataset’s data structure
includes a URL (the web address to be analyzed) and a Label

(the URL classification, where 0 denotes a legitimate site and 1
indicates a phishing site). The dataset is shown in Fig. 5.

The SQLi dataset (https://www.kaggle.com/datasets/
gambleryu/biggest-sql-injection-dataset) is designed to support
research and development in the detection of SQL attacks. The
corresponding dataset is effectively used to train advanced DL
models aimed at identifying SQLi patterns. This dataset includes
the Query and Label columns, consisting of 148326 elements. The
dataset is shown in Fig. 6.

B. DATA PROCESSING AND NORMALIZATION

To ensure consistent and effective model performance, distinct
preprocessing pipelines were implemented based on the nature of
each dataset. For the DDoS, MitM, and malware datasets, which
typically consist of structured network traffic data, the preproces-
sing began with data cleaning to remove duplicate records, incom-
plete entries, or anomalies.

Min–max normalization is a feature-scaling technique for
transforming feature values into a scale from 0 to 1. It ensures
all features contribute equally to algorithms. The min–max tech-
nique is computed by (1):

x 0 =
x − xmin

xmax − xmin
, (1)

where x is an initial value, xmin is a minimum value, xmax is a
maximum value, and x 0 is a normalized value.

Fig. 2. The DDoS dataset.
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C. FEATURE SELECTION

After normalization, feature selection was performed using
the chi-square metric. This technique gives the most important
features. The chi-square metric measures the dependence
between each feature and the target class label using the chi-
square (χ2) test of independence. This feature selection tech-
nique is especially suitable for discretized numerical features,
helping to reduce dimensionality while preserving meaningful

input. The chi-square metric is computed in the following
way (2):

x2c =
X ðNi −MiÞ2

Mi
, (2)

where N is an observed value, M is an expected value, and c is a
degree of freedom.

In this work, the 20 best features of DDoS,MitM, andmalware
datasets were chosen in the feature selection stage.

Fig. 3. The MitM dataset.

Fig. 4. The malware dataset.
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D. FEATURE EXTRACTION

In contrast to other datasets, the phishing and SQL injection
datasets mainly contain raw text data, such as URLs and SQL
query strings. The conversion of textual strings is implemented
using the TF-IDF metric, which converts textual data into numeri-
cal vectors by evaluating their importance in the whole dataset.
This representation effectively captures both common structures
that may signal phishing or SQL injection attacks.

TF-IDF is computed by (3):

TF − IDF = TF × IDF (3)

The significance of ti is evaluated as (4):

TFðtiÞ =
miP
k
i=1 mi

, (4)

where mi is the number of times a word ti takes place in a sentence,
and

P
k
i=1 mi is the total number of words in a sentence.

IDF is the inverse of the frequency of a word in a sentence and
is computed as (5):

IDFðti,SÞ = log
jSj

jðsi ⊃ tiÞj
, (5)

where jSj is the full number of sentences; jðsi ⊃ tiÞj is the number of
sentences where ti takes place.

E. ML AND DL MODELS

The datasets in this work are classified with a bunch of ML and DL
models.

An SVM is a type of algorithm efficiently used for classifica-
tion and regression tasks. It focuses on finding the optimal decision
boundary for separating data points of different classes with a
margin. The hyperplane of SVM is defined as (6):

w × xþ b = 0, (6)

where w = ðw1,w2, : : : ,wnÞ is a weight vector, x = ðx1,x2, : : : ,xnÞ is
a data vector, and b is a bias.

The SVM model is shown in Fig. 7.
An RF is an ensemble learning method that builds a collection

of decision trees and combines their predictions to improve accu-
racy and stability. It works by creating multiple random samples
from the dataset through a process called bagging, where each
sample is drawn with replacement and used to train an individual
tree. To further diversify the trees, RF selects a random subset of
features at each split, which reduces correlation among the trees.
Once all the trees are built, their predictions are aggregated: for
classification tasks, the model outputs the class chosen by the
majority of trees. The RF model is shown in Fig. 8.

A DNN is a fully connected network and the basic DL
architecture. Every neuron of the layer is connected to neurons
of the next layer. It allows the network to combine information
from all features, enabling it to capture complex, nonlinear relation-
ships within the data. Due to its versatility, DNN is good for various
classification assignments, representing the learning process.

Fig. 5. The phishing dataset.

Fig. 6. The SQL injection dataset.

Fig. 7. The SVM model.
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The structure of a DNN includes an input layer, which receives
a fixed-size numerical vector. The input vector is followed by
several hidden layers where weights are multiplied by neuron
values and summed up with each other and a bias. The results
of the multiplications then undergo Rectified Linear Unit (ReLU)
or sigmoid activation functions. This computation is shown as (7):

s = f

 Xn
i=1

wi × xi þ b

!
(7)

where xi are the input values, wi are the weights, b is the bias, and f
is the activation function.

The output layer provides the final prediction, with the sig-
moid function for binary classification. The DNN scheme is shown
in Fig. 9.

A CNN is a DL architecture designed to learn spatial hierar-
chies of features from input data. It is especially effective for
analyzing special structures, like images, but can also be applied to
other datasets. Unlike the traditional DNNs with feedforward-
connected layers, CNNs implement specialized layers to learn
hierarchies of patterns through local connectivity and weights.
The core components of CNN are convolutional layers, where
filters slide across the input data. These convolutional layers are
followed by ReLU activation functions, which introduce nonline-
arity in models and facilitate the handling of complex functions.
After applying ReLU functions, max pooling layers decrease the
dimensionality of feature maps. Pooling also summarizes the most
essential features in each region. The output is flattened into a one-
dimensional vector when the dimensions are sufficiently reduced
through successive convolution and pooling layers. The output
layer of the network gives the final prediction of the sigmoid
function. The mathematical computations are shown in (8)–(11):

1. Convolutional operations:

Sði,jÞ = ðI � KÞði,jÞ =
Xm−1
u=0

Xn−1
v=0

Kðu,vÞIðiþ u, jþ vÞ (8)

where I is an input image of size H ×W and K is a kernel filter
of size m × n.

Fig. 8. The random forest model.

Fig. 9. Dense neural network.
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2. The ReLU activation function:

ReLUðxÞ = maxð0,xÞ (9)

3. Max pooling:

Pði,jÞ = max
0≤u<k,0≤v<k

Iðiþ u,jþ vÞ (10)

4. Fully connected layer:

y = f ðWxþ bÞ (11)

where W is a weight matrix, b is a bias vector, and f is an
activation function.

The scheme of CNN is shown in Fig. 10.
A CNN-LSTM is a hybrid DL architecture that merges the

strengths of CNN and LSTM networks. The model begins with a

Fig. 10. Convolutional neural network.

Fig. 11. CNN-LSTM.
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convolutional layer, applying multiple filters to the input sequences,
such as those with shapes of (20, 1) or (100, 1), depending on the
dataset—to capture local spatial patterns. The ReLU activation
function introduces nonlinearity, enabling the detection of complex
feature interactions. This is followed by a global max pooling layer,
which compresses each feature map into a single value, reducing
dimensionality while preserving the most salient features. The
pooled features are then passed through a fully connected dense
layer, projecting them into a higher-dimensional space. Next, an
LSTM layer processes these representations, leveraging its gated
architecture to retain and model temporal dependencies in the data.
Additional dense layers with ReLU activation further refine the
learned features, transforming them into a task-specific representa-
tion. The model concludes with a single-neuron output layer using a
sigmoid activation, producing a probability score in the range of 0
and 1, suited for binary classification.

The CNN-LSTM scheme is shown in Fig. 11.
An LSTM-GRU neural network is a hybrid recurrent archi-

tecture that combines two types of GRUs: LSTM and GRU. Both
LSTM and GRU are designed to process long-term dependencies,
but they do so in different ways. Combining them in a single
network can leverage their complementary strengths for enhanced
sequence modeling. The first layer of the combined model is an
LSTM layer with the input data of (20, 1) or (100, 1) shapes,
depending on the dataset type. The output from the LSTM is then
put into a GRU layer. The GRU is simpler and more computa-
tionally efficient than LSTM and is used here to process the
temporal patterns extracted by the LSTM further. Following the
GRU, a standard dense layer with a single unit and a sigmoid

activation function outputs a probability between 0 and 1. The
scheme of LSTM-GRU is shown in Fig. 12.

The presented DL models are actively used in the subsequent
experiments.

IV. EXPERIMENTAL RESULTS
Experimental results on classifying cyber threats were conducted
using four DL models: DNN, CNN, CNN-LSTM, and LSTM-
GRU. Each architecture was trained and tested on labeled threat
data to evaluate its effectiveness in identifying malicious activity.
The models’ performance was estimated using accuracy, precision,
recall, and F1-score classification metrics (12)–(15):

Accuracy =
TPþ TN

TPþ TN þ FPþ FN
(12)

Precision =
TP

TPþ FP
(13)

Recall =
TP

TPþ FN
(14)

F1 − score = 2
Rrecision · Recall
Rrecisionþ Recall

(15)

where TP is true positives, TN is true negatives, FP is false
positives, and FN is false negatives.

Fig. 12. LSTM-GRU.
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Table I. Classification results of DDoS attacks

Metrics SVM Random forest DNN CNN CNN-LSTM LSTM-GRU

Accuracy 0.979 0.999 0.976 0.972 0.975 0.951

Precision 0.961 0.999 0.962 0.952 0.959 0.953

Recall 0.998 0.999 0.991 0.995 0.994 0.949

F1-score 0.979 0.999 0.976 0.973 0.976 0.951

Fig. 13. The accuracy and loss plots of DNN.

Fig. 14. The accuracy and loss plots of CNN.

Fig. 15. The accuracy and loss plots of CNN-LSTM.
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Additionally, the performance of the DL models was visually
assessed through accuracy, loss, and confusion matrix plots. The
accuracy plot illustrates the model’s progression in correctly
classifying samples during the training and validation phases,
providing insight into how well the model learns over time. The
loss plot tracked the model’s error over time, helping to identify
signs of convergence, underfitting, or overfitting by comparing
training and validation loss curves. Additionally, confusion
matrix plots were used to examine the distribution of true
positives, true negatives, false positives, and false negatives

for each model. These matrices offered a transparent and inter-
pretable representation of the models’ classification behavior,
revealing whether they were biased toward certain classes or
struggling with specific misclassifications. Together, these visua-
lizations had a significant role in evaluating and comparing the
effectiveness and reliability of each model in detecting cyber
threats.

The classification results of DDoS attacks are shown in
Table I. The accuracy, loss, and confusion matrices plots are
presented in Fig. 13–17.

Fig. 16. The accuracy and loss plots of LSTM-GRU.

Fig. 17. The confusion matrices.
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Table II. Classification results of MitM attacks

Metrics SVM Random forest DNN CNN CNN-LSTM LSTM-GRU

Accuracy 0.952 0.999 0.976 0.973 0.968 0.976

Precision 0.923 0.999 0.961 0.976 0.971 0.969

Recall 0.986 0.999 0.994 0.970 0.964 0.982

F1-score 0.953 0.999 0.977 0.973 0.967 0.976

Fig. 18. The accuracy and loss plots of DNN.

Fig. 19. The accuracy and loss plots of CNN.

Fig. 20. The accuracy and loss plots of CNN-LSTM.
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Along with the comparison of the received results themselves,
they are evaluated with the results of the paper [36]. The obtained
experimental results demonstrate superior detection performance,
achieving accuracy values in the range of 95% and 97%, while
the reported reference paper results have a maximum accuracy
of 93.41% on a similar dataset. These findings highlight the
effectiveness of the methods used in detecting the DDoS
attack.

The classification results of MitM attacks are shown in
Table II. The accuracy, loss, and confusion matrices plots are
presented in Fig. 18–22.

The comparison of MitM classification results with the paper
[37], which applies a multimodal Generative Adversarial Net-
works-enhanced detection framework, reports an accuracy score
of approximately 83% on theMitM dataset. The presented research
demonstrates substantially stronger detection. It delivers a targeted

Fig. 21. The accuracy and loss plots of LSTM-GRU.

Fig. 22. The confusion matrices.
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Table III. Classification results of malware

Metrics SVM Random forest DNN CNN CNN-LSTM LSTM-GRU

Accuracy 0.984 0.999 0.956 0.941 0.926 0.909

Precision 0.983 0.999 0.953 0.941 0.927 0.909

Recall 0.985 0.999 0.959 0.941 0.925 0.911

F1-score 0.984 0.999 0.956 0.941 0.926 0.910

Fig. 23. The accuracy and loss plots of DNN.

Fig. 24. The accuracy and loss plots of CNN.

Fig. 25. The accuracy and loss plots of CNN-LSTM.
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DL pipeline for MitM attacks, achieving an accuracy score of
97.6%. This combination of higher empirical performance and
system-level implementation underscores the practical superiority
and contribution of the presented study.

The classification results of malware attacks are shown in
Table III. The accuracy, loss, and confusion matrices plots are
presented in Fig. 23–27.

The malware classification results are compared with research
[38], where the DL model achieves only a 69% accuracy score,

indicating limited generalization capability for malware behavior
patterns in this dataset. In contrast, the presented approach in the
paper demonstrates substantially stronger performance, achieving
above 94% accuracy on the same malware dataset category by
efficient modern DL architectures and optimized training strate-
gies. This comparison highlights that while previous work strug-
gles to adapt deep models to this dataset effectively, this study
advances the state of practice by delivering a significantly more
robust malware detection pipeline.

Fig. 26. The accuracy and loss plots of LSTM-GRU.

Fig. 27. The confusion matrices.
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Table IV. Classification results of phishing

Metrics SVM Random forest DNN CNN CNN-LSTM LSTM-GRU

Accuracy 0.812 0.846 0.817 0.622 0.628 0.735

Precision 0.873 0.913 0.881 0.776 0.737 0.774

Recall 0.732 0.766 0.733 0.341 0.395 0.662

F1-score 0.797 0.833 0.801 0.474 0.515 0.714

Fig. 28. The accuracy and loss plots of DNN.

Fig. 29. The accuracy and loss plots of CNN.

Fig. 30. The accuracy and loss plots of CNN-LSTM.
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The classification results of phishing are shown in Table IV.
The accuracy, loss, and confusion matrices plots are presented in
Fig. 28–32.

In [39], several classical ML classifiers are evaluated on a large
phishing dataset and report the highest accuracy of 76%. On the
contrary, the presented research leverages DL architectures, such as
CNN-LSTM and LSTM-GRU, and applies enhanced feature
extraction techniques tailored for URL patterns, achieving over
81% accuracy on the same dataset. Therefore, the presented

method pushes performance significantly higher, establishing a
new benchmark for phishing detection.

The classification results of SQL injection are shown in
Table V. The accuracy, loss, and confusion matrices plots are
presented in Fig. 33–37.

In the study [40], there is a CNN for feature extraction and an
RF classifier for decision-making to detect SQL injection attacks
and report an accuracy of 75.6% under their experimental setup.
By contrast, the presented research reaches higher accuracy on the

Fig. 31. The accuracy and loss plots of LSTM-GRU.

Fig. 32. The confusion matrices.
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Table V. Classification results of SQL injection

Metrics SVM Random forest DNN CNN CNN-LSTM LSTM-GRU

Accuracy 0.908 0.951 0.911 0.785 0.787 0.784

Precision 0.954 0.985 0.942 0.766 0.761 0.823

Recall 0.856 0.917 0.877 0.823 0.840 0.724

F1-score 0.903 0.950 0.908 0.793 0.799 0.770

Fig. 33. The accuracy and loss plots of DNN.

Fig. 34. The accuracy and loss plots of CNN.

Fig. 35. The accuracy and loss plots of CNN-LSTM.
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same or comparable SQL injection dataset and demonstrates
classification accuracies of up to 95%. This shows that our model
surpasses the previously reported benchmark, thereby offering
improved detection performance and broader applicability in secu-
rity contexts.

An experimental evaluation of the proposed DL models high-
lights both the strengths and limitations of each architecture in
detecting various types of cyber threats. Across all datasets, DNN

and CNN-LSTM demonstrate consistently high accuracy, particu-
larly in classifying structured network threats, such as DDoS and
MITM attacks. It suggests that the fully connected nature of DNN
and the temporal–spatial processing capabilities of CNN-LSTM
are well suited to modeling regular patterns in network traffic. For
DDoS detection, all four models achieved accuracy above 95%,
with DNN and CNN-LSTM achieving the highest F1-scores of
97.6%. It shows an ability to distinguish between legitimate and

Fig. 36. The accuracy and loss plots of LSTM-GRU.

Fig. 37. The confusion matrices.
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malicious traffic, which is essential for real-time defense mechan-
isms. Similar trends are observed in MitM classification, where the
precision and recall metrics further validate the robustness of the
models. Interestingly, LSTM-GRU showed competitive perfor-
mance, reflecting the usefulness of combining memory-based
architectures for consistent attack detection. For malware classifi-
cation, performance dropped slightly, although DNN and CNN
were still able to maintain precision and recall above 94%. The
drop in overall precision suggests that malware features may be
more diverse and more challenging to generalize, requiring deeper
or more specialized networks.

On the other hand, phishing and SQL injection attacks—both
text-based and less structured—presented a bigger challenge. Here,
precision dropped below 82% for most models, with CNN and
CNN-LSTM having the most difficulty. This drop in performance
means that models trained on sequential and spatial data may not
generalize well to raw text unless enhanced with natural language
processing techniques. Despite these issues, the high precision
values on the phishing and SQL injection tasks indicate that
when the model identifies a threat, it is usually correct. However,
it may still miss many real-world threats, resulting in lower
recall. This trade-off suggests potential for improvement through
data augmentation or hybrid systems that combine DL with rule-
based methods. Visual analysis using accuracy and loss plots, as
well as confusion matrices, provided further insight into the model
behavior. In particular, DNN demonstrated robust convergence
across all datasets, whereas recurrent models, such as LSTM-GRU,
showed greater variance in loss curves, possibly due to their
sensitivity to sequence length and temporal noise. These results
highlight the need for fine-tuning hyperparameters and more
rigorous application of regularization methods for recurrent mod-
els. Overall, the experimental results support the applicability of
DL for intrusion detection in healthcare cybersecurity. However,
further optimization, especially in text-heavy threat categories,
remains necessary to build a comprehensive and robust security
solution.

V. CONCLUSION
The research focused on the classification of five major cyberse-
curity threats: DDoS, MitM, malware, phishing, and SQLi, using
DL models, including DNN, CNN, CNN-LSTM, and LSTM-
GRU. The study addressed the increasingly complex cybersecurity
landscape within healthcare institutions, where protecting sensitive
patient data was critical. An important element of this research was
the implementation of a secure hardware–software architecture that
leveraged WireGuard, a lightweight and modern VPN protocol.
WireGuard was employed to establish encrypted tunnels (e.g., wg0
and wg1) across network nodes, ensuring secure data communica-
tion and robust routing of cryptographic keys. Its configuration
utilized conventional network tools such as ifconfig, ip, and route,
facilitating a seamless and secure communication framework.
WireGuard’s approach to associating each peer with public keys
and internal IP addresses significantly enhanced authentication and
data exchange security. The threat classification part covered a
comprehensive methodology, comprising dataset collection and
preprocessing, feature extraction, model training, and performance
evaluation. The preprocessing involved specific techniques tai-
lored to the nature of each dataset, including min–max normaliza-
tion for structured network data and TF-IDF for text-based threats.
Chi-square feature selection identified the most significant features
for enhancing classification accuracy. For structured threats like

DDoS and MitM attacks, all models showed robust performance.
Specifically, DNN and CNN-LSTM consistently achieved the
highest accuracy and F1-scores, approximately 97.6%, highlight-
ing their effectiveness in distinguishing malicious from legitimate
network traffic. LSTM-GRU also showed competitive perfor-
mance in MitM attacks, reflecting the strength of memory-based
architectures in detecting temporal attack patterns. In malware
classification tasks, DNNmaintained the best performance, achiev-
ing 95.6% accuracy, followed closely by CNN. However, overall
accuracy and precision slightly declined, indicating the complex
and heterogeneous nature of malware features that necessitate
deeper or more specialized models. Conversely, detecting less
structured, text-based threats such as phishing and SQL injection
presented greater challenges. Accuracy and precision notably
decreased, with precision dropping below 82% in most cases,
especially for CNN and CNN-LSTM models. This reduction
suggested limitations in handling textual and sequential data
without advanced natural language processing techniques. Despite
this, models maintained high precision when identifying actual
threats, albeit with lower recall, indicating missed threats. Visual
analyses, including accuracy and loss plots alongside confusion
matrices, provided deeper insights into model behaviors. DNN
consistently demonstrated stable convergence across all tasks,
indicating strong generalization capabilities. Recurrent architec-
tures like LSTM-GRU showed higher variability, emphasizing
their sensitivity to temporal dynamics and sequence lengths and
thus highlighting the importance of careful hyperparameter
tuning and regularization. Overall, the results confirmed the via-
bility of DL models for cybersecurity in healthcare, particularly for
structured network attacks. However, further optimization and
incorporation of sophisticated natural language processing or
hybrid approaches are necessary to effectively handle more com-
plex, text-based threats and build a comprehensive security
solution.
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