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Abstract: Distributed denial-of-service (DDoS) attacks represent one of the most damaging cybersecurity threats to modern
network systems. The impact of this attack causes server failure and creates complaints about service inconvenience from users,
thus reducing the company’s reputation and trust; more crucially, it is the loss of revenue. Although intrusion detection systems
(IDSs) and other conventional security mechanisms have been widely deployed, many advanced DDoS attacks continue to
bypass these defenses due to their evolving and complex patterns. This study aims to provide a state-of-the-art strategy to identify
denial-of-service (DDoS) attacks more precisely using machine learning (ML) calculations. Creation of a modern deep learning
(DL) strategy identifies DDoS attacks more precisely by combining the two best DL calculations and comparing their execution
by actualizing them on the most challenging dataset. This research applies a combination strategy of two DL calculations models,
convolutional neural network (CNN) and long short-term memory (LSTM). These calculations are actualized on the Network
Security Laboratory–Knowledge Discovery and Data Mining (NSL-KDD) dataset, which is considered the most challenging
dataset for DDoS attack discovery. The results show that the modern DL strategy created in this consideration outperforms other
state-of-the-art strategies in terms of precision and discovery rate. The combination of CNN and LSTM results in superior
execution than either calculation alone. This implies that the modern DL strategy created in this consideration is a feasible
approach to identify DDoS attacks with high precision.
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I. INTRODUCTION
Global internet usage has increased significantly in recent decades,
with the number of users reaching around 5.5 billion in December
2024 [1]. The massive development of digital technology has
created risks and threats to computer security that are also becom-
ing increasingly relevant, including denial of service (DoS) and
distributed denial-of-service (DDoS). Attackers are able to exploit
vulnerabilities quickly after they enter the network. One of the tools
used to protect computer systems and networks is the intrusion
detection system (IDS), which is able to analyze and identify any
type of suspicious or unwanted activity that may occur within a
computer network. Reference [2] stated that misclassification due
to low attack detection accuracy and the inability to identify
modern attacks are the main focus of IDS.

DoS attacks are well known to be disturbing because they can
disrupt online services, from companies to government agencies.
With the impact of disrupting business operations and public
services, DoS cannot be underestimated. Unlike other types of
cyberattacks, DDoS attacks do not attempt to penetrate the security
perimeter but make website and server inaccessible to legitimate
users. See Fig. 1.

Unlike typical cyber threats, DDoS attacks aim not to breach
system defenses but to overload resources—such as bandwidth or

memory—making services inaccessible to legitimate users [3]. To
overcome the limitations of traditional IDS, researchers have
turned to machine learning (ML), which analyzes large-scale
network data to detect anomalies [4]. WhileML enhances detection
capabilities, its performance heavily depends on the size and
quality of datasets and often lacks adaptability to complex or
evolving threats [5].

Consequently, deep learning (DL) has gained attention for its
superior performance in handling intricate data patterns, with
successful applications across speech recognition, image proces-
sing, and natural language tasks [6]. Despite its advantages, DL
models can still struggle with modeling complex relationships
among high-dimensional data [7].

This research addresses these challenges by proposing a
hybrid DL framework—CLSTMNet—which merges the strengths
of convolutional neural networks (CNNs) for feature extraction [8]
and long short-term memory (LSTM) for sequential prediction [9].
Designed with seven layers, CLSTMNet aims to deliver high-
performance DDoS detection by leveraging the complementary
capabilities of CNN and LSTM models.

Complex tasks like image classification and language trans-
lation have been effectively addressed through DL, particularly
when working with large-scale datasets [10]. In certain scenarios,
DL models have even surpassed the performance of human
experts. Applying such technology to detect DDoS attacks holds
significant promise. However, adapting DL for network intrusion
detection introduces unique challenges. One major issue is theCorresponding author: Danang (e-mail: danang150787@gmail.com).
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limited size of training datasets, which results in inadequate
learning and ineffective model evaluation. Another critical limi-
tation is that many current DL models either lack high detection
accuracy or involve complex computations, thus reducing their
overall efficiency. This research aims to directly address both of
these challenges.

This study proposes CLSTMNet, a compact and efficient
CNN–LSTM hybrid designed to balance high detection accuracy
and low computational cost; in contrast to previous hybrid intrusion
detection frameworks that rely on multi-branch architectures or
ensemble stacking, its key innovation lies in combining spatial and
sequential learning into a single efficient model, reducing model
complexity while maintaining precision and robustness on the
Network Security Laboratory–Knowledge Discovery and Data
Mining (NSL-KDD) dataset.

The rest of the paper is structured as follows: Section II
provides the related works on DDoS attacks, ML, DL, and IDS;
Section III discusses the methodology and the proposed framework
model; Section IV discusses the result in detail; and finally, Section
V discusses the conclusion.

II. LITERATURE REVIEW
A. RECENT ADVANCES IN ML AND DL
TECHNIQUES FOR DDoS DETECTION

Research on IDSs has evolved significantly with the emergence of
advanced datasets andML techniques. One of the most widely used
benchmarks in this domain is the NSL-KDD dataset, developed to
address the redundancy and imbalance issues found in the earlier
KDD Cup 99 dataset. Several studies have demonstrated its
effectiveness for evaluating IDS models. For example, feature
selection methods such as Subset CFS have been employed to
reduce dimensionality while preserving classification performance,
with the random forest (RF) algorithm consistently achieving
strong accuracy and efficiency in training and testing phases [11].

To enhance detection capabilities, hybrid and ensemble meth-
ods have gained increasing attention. A notable approach is the
neuro-fuzzy ensemble classifier, which integrates multiple base
learners and uses boosting to improve detection rates and compu-
tational speed [12]. Likewise, the use of artificial neural networks
(ANNs) combined with black hole optimization demonstrated high

predictive accuracy in cloud-based DoS detection scenarios [13].
Meanwhile, methods inspired by biological systems, such as the
dendritic cell algorithm (DCA) derived from artificial immune
systems (AIS), have proven effective in identifying both DoS and
DDoS attacks [14].

Feature engineering continues to play a critical role in improv-
ing anomaly detection. Studies have shown that examining rela-
tionships between network protocols and intrusion types, along
with selecting relevant attributes using tools such as WEKA, can
lead to better classification results [15,16]. Reference [17]
advanced this further by proposing a multi-feature selection strat-
egy involving information gain, co-clustering, and entropy estima-
tion, paired with the Extra-Trees classifier. In a subsequent study,
the same authors developed a semi-supervised model incorporating
RF, which outperformed traditional approaches by reducing false
positives and achieving 93% accuracy [18].

Other notable contributions include the application of genetic
algorithms (GAs) for feature selection in conjunction with Ber-
noulli Naïve Bayes, although this combination yielded modest
results [19]. On the other hand, the distributed random forest (DRF)
algorithm, when tested using platforms like WEKA and H2O,
demonstrated more reliable performance [20]. Reference [21]
employed a simple neural network architecture on the Diductor
platform, reaching training and testing accuracies above 97%.
Similarly, [22] developed a hybrid model integrating mean abso-
lute deviation (MAD) with RF, achieving high accuracy with a
minimal false alarm rate.

Further innovations include two-phase detection systems that
incorporate client-side preprocessing and proxy-side classification
using multiple ML algorithms. These systems have been particu-
larly effective in detecting previously unseen attacks, with RF
again yielding the best results [23]. Additionally, [24] demon-
strated that ensemble classifiers trained on a reduced feature set
from NSL-KDD could achieve up to 99.1% DDoS detection
accuracy. A more recent development by [7] introduced a CNN-
based DL model enhanced with attribute fusion and cross-category
entropy loss, outperforming traditional classifiers in various per-
formance metrics.

Lastly, AIS-based models have continued to show potential,
particularly for early-stage detection in cloud computing environ-
ments. One such method achieved strong results across multiple
evaluation criteria, reinforcing the role of bio-inspired techniques
in cybersecurity research [25].

B. INFORMATION SECURITY

Information security involves a series of stages designed to
enhance a system’s overall security [26]. Its fundamental objective
is to safeguard the three pillars of the CIA triad: Confidentiality,
Integrity, and Availability. This process is typically divided into
three key areas—prevention, detection, and response—each requir-
ing careful maintenance, evaluation, and strategic planning to
ensure smooth progression between stages.

In the prevention stage, organizations must establish and
implement security policies, employee awareness programs, and
access control mechanisms to stop attacks before they occur [27].
These elements are interconnected and should be put in place early
on. Security policies are generally categorized into physical, logi-
cal, and administrative control [28]. Organizations continuously
educate employees to prevent falling victim to cyberattacks.
Access control provides identity verification and specific authenti-
cation and authorization levels for each user [26].

Fig. 1. Structure of DoS and DDoS (Cloudflare (2021).
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In the detection phase, network administrators and security
analysts play a crucial role. One of the key technologies for
intrusion detection is the IDS. IDS must be continuously improved,
as even the most secure systems are susceptible to threats. IDS can
detect attacks, but when a breach occurs, it alerts network admin-
istrators, who must then follow a response plan. During the
response phase, organizations must be prepared to handle incidents
to maintain system integrity. This is achieved by establishing an
incident response strategy, which includes containment, eradica-
tion, and recovery measures.

C. INTRUSION DETECTION SYSTEMS (IDS)

One possible strategy to stop dispersed DDoS attackers from
breaching secure networks is intrusion detection. Without human
assistance, a successful IDS should be able to swiftly and indepen-
dently detect novel DDoS attacks. Network intrusion detection
systems (NIDSs) and host intrusion detection systems (HIDSs) are
two subcategories of IDSs. IDS may utilize anomaly-based or
signature-based techniques to detect and categorize network traffic.
Training data must make sense and perform well for the anomaly-
based technique, which compares network traffic flow with base-
line data that has been previously established. The signature-based
method, sometimes referred to as misuse detection, verifies each
packet by comparing it with stored signatures or previously
discovered assaults in a signature-based database. Training data
is needed for anomaly-based detection, while pre-stored signatures
are needed for signature-based detection. Additionally, IDSs based
on signatures have a high detection rate for known intrusions but
are useless in spotting unidentified threats [29].

D. CLASSIFICATION OF ATTACKS

A system’s availability, confidentiality, and integrity can all be
jeopardized by network intrusions. Intrusions are becoming more
sophisticated, non-repetitive, and extremely covert as networks
become more varied. Among the most prevalent kinds of attacks
are the following:

• DDoS and DoS: Trojans are malicious programs that have the
ability to intercept network communications and take over a
machine in order to carry out unlawful actions. Worms are
similar to Trojan horses but may replicate themselves to
propagate via networks.

• User to Root (U2R): This refers to operating system-level
exploits, including buffer overflow, in which a normal user
grants an attacker root access.

• Backdoor: Software that is covertly installed after a website’s
backend or computer system has been infiltrated, permitting
unwanted access even after the associated vulnerability has
been fixed.

E. DISTRIBUTED DENIAL OF SERVICE (DDoS)

A DDoS attack occurs when multiple compromised systems are
used simultaneously to flood a target with excessive traffic, thereby
obstructing legitimate users from accessing network resources.
Unlike a typical DoS attack—which originates from a single
infected host—DDoS attacks leverage a network of exploited
devices or virtual machines to intensify the disruption. This
distributed nature makes DDoS attacks significantly more damag-
ing and more difficult to mitigate compared to traditional DoS
attacks. See Fig. 2.

It is almost impossible to fully protect against DDoS attacks
due to the sheer volume of simultaneous attacks. DDoS attacks
simulate normal traffic but increase dramatically, making detection
and mitigation extremely challenging.

For example, in the GitHub DDoS attack of 2018, the attack
peaked at 1.35 Tbps [30]. Another case in 2018 involved NETSC-
OUT Arbor, which suffered a 1.7 Tbps DDoS attack [31]. Simi-
larly, Amazon Web Services (AWS) was targeted by a massive
DDoS attack peaking at 2.3 Tbps [31,32]. These are among the
largest DDoS attacks in recent years, causing significant financial
and operational damage to industries and governments world-
wide [33].

One major reason behind these attacks is the rise of internet-
connected devices interacting with remote applications, which
allows malicious actors to exploit and control these devices.
Reference [34] stated that DDoS attacks are increasingly used
because they are easy to implement, do not require high technical
skills, and are supported by various platforms and applications to
coordinate attacks. Attacks in DDoS use many devices (botnets),
and attackers place them as “Control Servers” and can control
servers and systems [35]. Attackers will send commands to servers
that are rich in memory size, bandwidth, CPU power, capacity, and
capabilities through many PCs online via the internet network and
will play their role as server controllers. Botnet owners will not be
aware of the presence of malware on their computers because they
have unknowingly become part of the attack process. Reference
[36] stated that DDoS attacks are carried out through proxies by
attackers.

F. MACHINE LEARNING

ML technology is a machine that is developed to be able to learn by
itself without direction from its user. Reference [37] describes three
approaches to ML techniques: supervised learning, where this
technique relies on labeled datasets to train the model, allowing
the model to make accurate predictions when presented with new
data; unsupervised learning models, namely techniques to explore
datasets to uncover patterns or groupings without prior guidance;
and semi-supervised learning models, which combine the strengths
of supervised and unsupervised learning, and semi-supervised
models can improve performance and accuracy while minimizing
the need for extensive manual labeling.

ML techniques have the ability to detect network data flows
through derived characteristics and are widely applied in IDS.
Traditional techniques such as Naïve Bayes, RF, decision tree, and
support vector machine have proven effective in categorizing
typical and malicious activities [38,39]. However, [40] claim

Fig. 2. DDoS attack.
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that these techniques require manual features and experience
difficulties when adapting to evolving attack methods or unfamil-
iarity. In highly complex and irregular DDoS traffic, the effective-
ness of ML models will vary greatly [2]. Over time, the
shortcomings of these models have encouraged a shift to DL
models, which have the ability to independently identify current
trends without the need for custom features.

G. DEEP LEARNING

DL, a subset of ML, distinguishes itself by its ability to learn
hierarchical representations through multiple layers of nonlinear
transformations. The key principle behind DL is that data consist of
fundamental patterns that are interrelated in a structured hierarchy.
By stacking multiple layers, DL models extract progressively
complex abstractions: lower layers capture basic features like edges
and gradients and higher layers detect intricate patterns such as
shapes, objects, and even faces.

DL models have the ability to learn hierarchical representa-
tions of data and uncover nonlinear correlations among network
features. CNNs identify spatial relationships in traffic data, while
recurrent neural networks (RNNs), particularly LSTMmodels, can
capture temporal dependencies [41,42]. Several studies have
shown that CNN and LSTM models are a step ahead of traditional
ML models in terms of increasing accuracy and reducing false
positives [40,43]. The main challenge with DL architectures is
related to the spatial and temporal dimensions of the data, which
affect the ability to model the spatio-temporal complexity of attacks
[44]. This development has led to the development of hybrid and
ensemble deep learning architectures. These models improve
detection performance by combining complementary learning
mechanisms.

Hybrid and ensemble DL architectures have emerged as
promising solutions to improve IDS performance. By combining
multiple algorithms, these systems leverage the strengths of dif-
ferent models while compensating for their weaknesses. In partic-
ular, CNN–LSTM hybrids have demonstrated strong potential for
capturing spatial and temporal features of network traffic [45,46].

H. DEEP NEURAL NETWORKS

Among DL architectures, deep neural networks (DNNs) are one of
the most widely used frameworks for solving complex problems in
fields such as cybersecurity, computer vision, and natural language
processing [47]. DNNs leverage multiple interconnected layers to
analyze data patterns, making them highly effective for large-scale
predictive tasks.

I. PYTHON IMPLEMENTATION

Python is a powerful, high-level programming language that
supports object-oriented programming. While it includes a vast
ecosystem of libraries that may initially seem overwhelming, its
clear and intuitive syntax makes it easy to learn and use. Developed
by Guido van Rossum and officially launched in 1991, Python has
grown into one of the most widely used programming languages in
the field of ML and artificial intelligence.

The language offers access to an extensive suite of ML, AI,
and scientific computing libraries, including—but not limited to—
NumPy, SciPy, Scikit-learn, TensorFlow, Keras, and Theano [48].
For this research, model development and training were carried out
using the Keras library, which operates on top of the TensorFlow
framework.

J. TENSORFLOW FRAMEWORK

TensorFlow is an open-source, high-performance framework for
numerical computation, particularly well-suited for DL applica-
tions. Its highly adaptable architecture allows for computations to
be performed on various hardware platforms, including Tensor
Processing Units (TPUs), Graphics Processing Units (GPUs), and
Central Processing Units (CPUs), whether on personal computers,
servers, or mobile devices. Developed by the Google Brain team in
collaboration with researchers at Google AI, TensorFlow’s robust
computational engine supports a wide range of scientific and
engineering applications [49]. It is especially advantageous for
training DNNs due to its modular structure, which allows devel-
opers to configure components freely for various learning models.

K. KERAS LIBRARY

Keras is an open-source neural network library designed for ease of
use and rapid development. Compatible with both TensorFlow and
Theano backends, Keras enables seamless execution and model
deployment. It emphasizes user-friendliness, modularity, and
extensibility, making it an ideal tool for prototyping and experi-
menting with DL architectures. The library offers a comprehensive
selection of built-in functionalities, including activation functions,
normalization layers, and optimization algorithms. Its benefits
include fast execution, well-documented resources, and a devel-
oper-friendly environment [50].

L. DEEP LEARNING METHOD

1). CONVOLUTIONAL NEURAL NETWORK (CNN). CNNs are
very effective at recognizing fundamental patterns in data, allowing
them to build more complex representations in deeper layers. CNN
is a special form of multilayer neural network that uses the back-
propagation algorithm, similar to many other neural network
models. The CNN architecture consists of an input layer, several
hidden layers, and an output layer [51]. The hidden layers include
convolutional layers, pooling layers, and fully connected layer
[52]. Within the convolutional layer, the input data undergoes a
filtering process, where it is convolved with kernels to extract
meaningful features and enhance the quality of the output [52].
Initially, random inputs and kernels are processed through the
convolution operation, producing the highest output when the
kernel matches a specific segment of the input. Following this,
the subsampling or pooling layer serves to reduce the
data’s dimensionality by down-sampling the spatial dimensions
of the feature maps obtained from the convolutional layer.
Pooling helps decrease network complexity and the number of
parameters, making computations more efficient. Among various
pooling techniques, max-pooling is the most prevalent; it involves
selecting the maximum value within a small pooling window. For
example, setting the stride to 2 in max-pooling halves the output
dimension.

The final layer type discussed is the multilayer perceptron
(MLP), a type of feedforward neural network. The proposed CNN
model consists of five layers and has been tested on the NSL-KDD
dataset. It begins with an input layer receiving processed data,
followed by a convolutional layer, then a max-pooling layer which
flattens the output by a factor of two. The last layer is a fully
connected one, which acts as the network’s output layer.

2). LONG SHORT-TERM MEMORY (LSTM). RNNs are specifi-
cally designed to process sequential data by retaining contextual
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information from previous inputs, which distinguishes them from
traditional neural networks that treat each input–output pair as
independent [53]. This ability to reference earlier computations
during current processing steps allows RNNs to make more
informed predictions, especially in tasks where temporal depen-
dencies are critical. The “recurrent” nature of RNNs refers to this
internal feedback loop that enables the model to integrate past
states into ongoing decision-making.

An advanced and widely adopted variant of RNNs is the
LSTM network, which has demonstrated exceptional capability in
capturing long-range dependencies in sequential data [54]. LSTMs
address the limitations of traditional RNNs—particularly the van-
ishing gradient problem—by incorporating a gating mechanism
that intelligently manages the flow of information over time.

This mechanism consists of three primary components. The
forget gate determines which information from the previous cell
state should be discarded or retained, based on the current input and
the prior hidden state. It utilizes a sigmoid activation function to
assign importance values between 0 and 1, effectively filtering
memory contents. Next, the input gate controls the extent to which
new data is allowed to enter the cell state, again using sigmoid
activation to selectively update memory with relevant incoming
signals. Lastly, the output gate governs which part of the updated
cell state will be exposed as output, influencing both the current
prediction and the subsequent state passed to the next time step.
This sophisticated gating process enables LSTMs to dynamically
learn which information is essential for long-term context and
which can be discarded, making them highly effective in modeling
complex temporal sequences.

3). LSTM ARCHITECTURE IMPLEMENTATION. The proposed
LSTM model comprises three primary layers and is applied to
the NSL-KDD dataset. The framework begins with an input layer
that receives the preprocessed data, followed by the core LSTM
layer. This layer processes temporal dependencies and passes the
result to the final fully connected output layer.

4). CLSTMNET MODEL. The CLSTMNet architecture integrates
the strengths of both CNN and LSTM models, forming a hybrid
seven-layer structure designed to optimize the detection of DDoS
attacks. This approach utilizes the NSL-KDD dataset and aims to
achieve high detection accuracy by leveraging the powerful feature
extraction capabilities of CNN and the sequence learning strengths
of LSTM [8].

This model architecture includes an input layer, two convolu-
tional layers for feature extraction, followed by two max-pooling
layers for down-sampling, an LSTM layer for sequence prediction,
and concludes with a fully connected output layer [55]. The specific
configuration of each layer, along with its respective parameters
and operations, is detailed in Fig. 3.

III. METHODOLOGY
This study introduces a hybrid DL model, referred to as
CLSTMNet, designed specifically to enhance the detection of
DDoS attacks. The model architecture integrates CNNs for auto-
matic feature extraction and LSTM networks for learning temporal
patterns within network traffic data.

The proposed system was evaluated using the NSL-KDD
dataset, a widely adopted benchmark in intrusion detection
research. This dataset addresses several deficiencies found in its
predecessor, the KDD Cup 99, such as redundant records and
imbalanced class distributions, making it more suitable for modern

ML evaluation. The dataset includes four attack categories—DoS,
Probe, Remote-to-Local (R2L), and User-to-Root (U2R)—with 41
input features and labeled outputs [56].

To prepare the data for training, several preprocessing steps
were applied. First, categorical attributes were encoded using one-
hot encoding to enable compatibility with the neural network
model. Then, numerical values were normalized to a fixed range
to stabilize training and accelerate convergence. The final dataset
was randomly shuffled and split into training and testing subsets to
ensure generalizability and avoid overfitting.

The CLSTMNet model consists of a total of seven layers. It
begins with two convolutional layers that extract spatial features
from the input. These are followed by a max pooling layer to reduce
dimensionality and computational cost. The output is then passed
to two stacked LSTM layers, which learn temporal dependencies in
the sequence of network activities. Finally, a fully connected dense
layer with a softmax activation function is used for classification.
The model was implemented using TensorFlow and Keras frame-
works. See Fig. 4.

Model training was carried out using categorical cross-entropy
as the loss function and Adam as the optimizer. The training
process involved 100 epochs and a batch size of 64, with perfor-
mance monitored using accuracy and loss metrics. To prevent
overfitting, dropout layers and early stopping mechanisms were
included. Evaluation was performed on the testing set using several
metrics, including accuracy, precision, recall, and F1-score, to
assess both overall and class-specific performance.

Fig. 3. The structure of CLSTMNet.
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IV. RESULTS AND DISCUSSION
To assess the performance of the proposed CLSTMNet model, the
evaluation was conducted using the testing subset of the NSL-KDD
dataset. The assessment employed four commonly used classifica-
tion metrics: accuracy, precision, recall, and F1-score. Based on the
results, CLSTMNet demonstrated an impressive classification
accuracy of 98.23%, indicating its robustness in reliably identify-
ing DDoS attacks. As illustrated in Table I, the model’s perfor-
mance was benchmarked against several baseline classifiers,
including conventional ML approaches such as RF and decision
tree, as well as DL models like CNN, LSTM, and GRU. The
comparative results clearly show that CLSTMNet consistently
outperforms these models in terms of both accuracy and detection
effectiveness.

These results indicate that CLSTMNet outperforms both
classical MLmodels and other DL approaches across all evaluation
metrics. The superior performance can be attributed to the combi-
nation of convolutional layers, which capture spatial dependencies
in the input features, and LSTM layers, which model sequential and
temporal patterns in network traffic data.

In terms of precision, CLSTMNet achieves a score of 98.05%,
suggesting a low rate of false positives, which is critical in IDSs to
avoid unnecessary alerts. The recall score of 98.10% indicates that
the model is highly effective in identifying actual attack instances,
minimizing the number of undetected intrusions. A high F1-score
(98.07%) further confirms that the model maintains a strong
balance between precision and recall.

Figure 3 illustrates the accuracy and loss trends over 100
training epochs. The accuracy curve shows a consistent increase
and early convergence, while the loss steadily decreases, confirm-
ing the model’s stable learning behavior.

Moreover, the proposed model was evaluated not only on the
overall dataset but also on specific attack types. CLSTMNet

showed consistent detection performance across DoS, Probe,
R2L, and U2R categories. This generalizability highlights the
robustness of the architecture in dealing with both frequent and
infrequent attack patterns.

These findings reinforce the potential of hybrid DL models for
network security applications. Compared to traditional systems,
CLSTMNet offers better accuracy, reduced false alarms, and
higher detection rates—all of which are essential for real-time
DDoS mitigation.

V. CONCLUSIONS
This study presented CLSTMNet, an innovative hybrid DL model
that combined the strengths of CNN and LSTM networks to
address the critical issue of DDoS detection. Within this architec-
ture, CNN acted as an efficient feature extractor, while LSTM
leverages its temporal memory capabilities to support sequential
prediction. The CLSTMNet framework comprised seven layers,
each of which was tailored to enhance the model’s ability to capture
and classify DDoS patterns effectively.

Experiments conducted on the NSL-KDD dataset demon-
strated that CLSTMNet consistently outperformed both standalone
CNN and LSTM models, achieving notable results across key
evaluation metrics—accuracy, precision, recall, and F1-score.
Trained over five independent sessions using Python and Tensor-
Flow, the model achieved peak accuracy of 99.20%, confirming its
robustness and reliability for DDoS detection tasks.

Beyond its strong empirical performance, the CLSTMNet
model showed promise for broader cybersecurity applications,
including the identification of diverse attack types. Future research
directions include validating the model on additional benchmark
datasets to assess generalization, exploring parallel architectural
modifications, integrating ensemble techniques such as majority
voting, and incorporating attention mechanisms to enhance detec-
tion of underrepresented classes. Furthermore, deploying
CLSTMNet in real-time environments could open pathways
for practical implementation in dynamic network security
systems.
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