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Abstract: Traditional bacterial identification methods relying on microscopic and biological analyses are often constrained by
high time, cost, and labor requirements. To address these limitations, this study proposes an enhanced bacterial detection
framework integrating the Two-phase Mutation Grey Wolf Optimizer (TMGWO) for feature selection. The TMGWO algorithm
is employed to identify the most informative feature subsets, minimize redundancy, and improve classification performance. The
proposed workflow comprises data collection, preprocessing, segmentation, feature extraction, feature selection, and classifica-
tion using the K-nearest neighbor (KNN) algorithm. Experimental evaluation demonstrates that incorporating TMGWO
improves classification accuracy by 6.14% and reduces execution time by 33.6 seconds compared with models that exclude
feature selection. These results confirm that the TMGWO-based approach offers a robust and efficient solution for automated

bacterial detection in microscopic imagery.
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I. INTRODUCTION

Microbes, also known as microorganisms, are tiny organisms that
are visible only under a microscope because they are too small to be
seen with the naked eye [1,2]. Microorganisms can be categorized
into two types: single-celled and multi-celled. Numerous types of
microorganisms exist on Earth, including bacteria, fungi, viruses,
algae, protozoa, and others, all of which are vital for both the
environment and human well-being [3]. Human illnesses like
typhoid, food poisoning, AIDS, polio, milder cases of the common
cold, cancer, and others are caused by these microbes [2,4].
According to the World Health Organization (WHO), contami-
nated drinking water is a major issue, with around 2 billion people
worldwide drinking water polluted with feces. It is estimated that
this leads to the death of 525,000 children under the age of 5 years
each year from diarrheal diseases [5].

Manual microbe detection and counting is a slow, difficult, and
expensive process [6]. The advent of artificial intelligence (Al),
encompassing machine learning (ML) and deep learning (DL), has
greatly propelled progress in the field of object detection [7]. These
technologies are extensively utilized in prediction and classifica-
tion tasks due to their ability to identify and learn patterns from data
[8]. In the context of bacterial detection, particularly for Escher-
ichia coli (E. coli), ML has demonstrated promising results in
enhancing detection accuracy and efficiency.

In recent years, the need for rapid, accurate, and cost-effective
microbial detection has become increasingly urgent, particularly in
sectors such as public health, food safety, water quality monitoring,
and clinical diagnostics [6]. Traditional laboratory-based detection
methods, such as culturing, staining, and manual microscopic
analysis, often require skilled personnel and lengthy processing
times, making them less suitable for high-throughput or real-time
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applications [5]. As global challenges like population growth,
environmental pollution, and pathogen outbreaks intensify, there
is a growing demand for automated systems capable of delivering
reliable microbial analysis. Integrating intelligent computational
techniques with imaging technologies presents a promising path
toward developing scalable microbial detection systems that can
support faster decision-making and improve overall safety stan-
dards [9].

In summary, this study proposes a bacterial detection system
focused on four bacterial classes—E. coli, Pseudomonas aerugi-
nosa, Proteus, and Staphylococcus aureus—using a comprehen-
sive set of geometric, color, texture, and moment features to
accurately capture their visual characteristics. By applying the
K-nearest neighbor (KNN) classification method, the system le-
verages feature similarity to achieve reliable categorization of
bacterial images. Implemented as a Python-based desktop applica-
tion, the developed system offers a practical, efficient, and acces-
sible tool for laboratory use. Overall, the approach demonstrates
the potential to provide a faster, more cost-effective, and accurate
alternative to conventional manual bacterial detection methods.

The rest of this paper is structured as follows. Section II
provides an overview of the related work concerning the Grey
Wolf Optimizer (GWO) algorithm and feature selection. This is
followed by Section III, which details the materials and methods
used in this study, including the data preparation and experimental
setup. Section IV presents the main results of our experiments and
thoroughly discusses their implications. Finally, Section V con-
cludes the paper, summarizing the key findings and suggesting
directions for future research.

Il. RELATED WORK

Many recent studies have shown that ML and DL methods are very
effective at detecting bacteria. Manfredi et al. created a quick and
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accurate way to detect the bacterial strain E. coli O157:H7 by
combining MALDI-TOF mass spectrometry with an ML model
[10]. E. coli O157:H7, a type of enterohemorrhagic bacteria that
produces Shiga toxin, is a significant pathogen [11]. It spreads
through contaminated food and air and can cause health issues in
people, including diarrhea, hemorrhagic colitis, and hemolytic
uremic syndrome (HUS) [12]. Using MALDI-TOF mass spec-
trometry alongside ML predictive models, researchers developed a
fast and accurate method to detect Shiga toxin-producing Escher-
ichia coli (STEC) serotype O157:H7 [13]. This study achieved a
classification accuracy of 99.3%, with a sensitivity of 98.5% and a
specificity of 100%. Similarly, Mann et al. developed a DNAzyme-
based hydrogel sensor platform combined with Al for colorimetric
detection of E. coli, which successfully detected 101 CFU/mL E.
coli in lake water samples and achieved high accuracy in clinical
samples [14].

Furthermore, DL methods have also been explored for bacte-
rial detection. A deep convolutional neural network (CNN) was
employed to identify and classify bacteria in microscopic images
by Abougarair et al. [15]. Their approach significantly accelerated
and improved the accuracy of bacterial screening, even in visually
complex backgrounds. Kotwal et al. [16] applied an optimized
support vector machine (SVM) enhanced by GWO for spectro-
scopic analysis and automatic detection of E. coli in clinical
samples, achieving improved sensitivity and specificity. Addition-
ally, Qian et al. [17] proposed a statistical ML framework. It was
used to predict E. coli O157:H7 concentrations in untreated surface
water for hydroponic lettuce irrigation, achieving a 20% reduction
in RMSE compared to conventional methods.

Within the field of feature selection, optimization algorithms
have become popular because of their effectiveness in finding the
best solutions to complex problems to improve classification
performance. For example, Ghosh et al. introduced a hybrid feature
selection approach that integrates the GWO with the Ant Lion
Optimizer (ALO) for microbial diagnosis based on microarray
data, demonstrating improvements in classification accuracy and
reductions in selection time [18]. Likewise, Nasip et al. developed
a hybrid model integrating DenseNet201-based transfer learning
for feature extraction with various feature selection algorithms for
classifying 33 bacterial species, confirming the benefits of multi-
stage feature selection [19]. Kotwal et al. analyzed ML methods,
including CNNs, SVMs, and Random Forests, for detecting and
classifying bacteria from microscopic images, achieving accuracies
up to 99.7% [2]. Wu et al. conducted a comparative study of
pretrained CNN architectures—AlexNet, VGGNet, Inception, Re-
sNet, and DenseNet—for bacterial classification, achieving the best
results with DenseNet-121 at 99.08% [11]. These studies highlight
the growing success of Al-based techniques in bacterial identifica-
tion, especially through transfer learning approaches applied to
limited datasets.

In the context of the proposed research, the application of ML
algorithms like KNN, enhanced with feature selection by the Two-
Phase Mutation Grey Wolf Optimizer (TMGWO), is one example
of the integration of these techniques. KNN is selected for this
study because it is a simple yet effective classification method that
performs well on small- to medium-sized datasets [20]. KNN
classifies data based on pattern similarity, making it suitable for
bacterial detection tasks where similar bacteria exhibit similar
feature characteristics. Moreover, KNN does not require complex
model training, allowing for faster implementation and adaptability
to new datasets. The combination of KNN and the feature selection

method optimized by TMGWO is anticipated to make bacterial
detection both more accurate and more efficient [21].

Previous studies have shown that the use of optimization
algorithms such as GWO in feature selection can significantly
improve classification performance. For example, Sallam er al.
[22] used GWO for feature selection in the detection of Acute
Lymphoblastic Leukemia (ALL) and achieved an accuracy of up
to 99.69%. In addition, Hussein et al. introduced an improved
variant of the Moth-Flame Optimization (MFO) algorithm,
termed GMSMFO, for feature selection, which showed competi-
tive performance in various applications, including intrusion
detection systems [23]. Sharaha er al. showed that combining
infrared spectroscopic microscopy with multivariate analysis is a
promising approach to rapidly detect ESBL-producing E. coli
from urinary tract infection samples [24]. This study achieved a
success rate of 97%, sensitivity of 99%, and specificity of 94% in
detecting ESBL-producing bacteria within minutes of the first
culture [24].

Although previous studies have demonstrated the effective-
ness of various metaheuristic algorithms such as GWO, ALO, and
others for feature selection in microbial detection tasks, these
approaches still present challenges related to premature conver-
gence, suboptimal feature subsets, or less stable performance
across different datasets. To overcome these limitations, this study
employs an enhanced feature selection approach based on
TMGWO. TMGWO enhances the original GWO by incorporating
mutation strategies in two distinct phases, which increases its
exploration and exploitation capabilities and helps avoid local
optima during the search process. Therefore, this study aims to
develop an effective and efficient bacterial detection system by
utilizing this enhanced feature selection technique. Specifically, the
research focuses on classifying bacteria with and without the use of
feature selection and enhancing both the accuracy and execution
time of the bacterial detection process, enabling more precise
identification within a shorter time frame.

lll. MATERIALS AND METHODS

The research process is designed systematically to ensure optimal
results in classifying bacteria based on microscopic images. The
design of this study includes several main stages, starting from data
collection and processing to analysis of the results. The data used
are in the form of bacterial images that will go through a series of
preprocessing processes to improve image quality. Furthermore,
the image will undergo segmentation to extract bacterial objects
from the background. Important features from the segmented
image will be extracted to obtain characteristics that optimally
represent bacteria.

The core process in this study involves feature selection using
TMGWO, designed to identify the optimal feature subset to
enhance classification accuracy while minimizing data dimension-
ality. After the features are selected, the data will be classified using
the KNN method to determine the type of bacteria detected.
Finally, the classification results will be analyzed based on detec-
tion accuracy and execution time to evaluate how well the new
method works. The research stages are illustrated in Fig. 1, starting
from the input dataset of microscopic images, followed by pre-
processing to enhance image quality, segmentation to isolate
bacterial objects, feature extraction, and feature selection using
TMGWO. The selected features are classified using KNN to
determine the type of bacteria.
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Fig. 1. Flowchart of the proposed bacteria detection system.

A. DATA COLLECTION

In this study, the dataset utilized consists of four types of water-
borne bacteria, namely E. coli, P. aeruginosa, S. aureus, and
Proteus species. These bacteria are observed and analyzed through
microscopic imaging after being subjected to the Gram staining
technique, which is a fundamental method in microbiology for
classifying bacterial species. The image data of E. coli are obtained
directly through microscopic observation conducted at the Micro-
biology Laboratory of the Samudra University during practical
laboratory work utilizing the Gram staining technique. Meanwhile,
the image data for the other three bacterial species, P. aeruginosa,
S. aureus, and Proteus species, are collected from the Digital Image
of Bacterial Species (DIBaS) open-access database to ensure the
availability of high-quality and verified microscopic bacterial
images.

The Gram staining technique involves a differential staining
process that allows researchers to classify bacteria into two main
groups—Gram-positive and Gram-negative—according to the
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Fig. 3. Training and testing dataset.

structural and chemical characteristics of their cell walls, specifi-
cally the thickness of the peptidoglycan layer [25].

The application of the Gram staining process in E. coli samples
has resulted in stained cell walls that are clearly visible in the
microscopic images, enabling a more effective analysis in the later
stages of this research. The application of the gram staining process
illustrates in Fig. 2.

All images, regardless of source, are subjected to the same
preprocessing pipeline to ensure consistency in the analysis. The
following image can be seen in Fig. 3. The datasets are divided into
training and testing sets for classification using the KNN algorithm.
For each bacterial class, a total of 17 images are allocated for
training, while 3 images are reserved for testing. This division
ensures that each class is equally represented in both the training
and testing phases, facilitating an unbiased evaluation of the
classification performance.

The dataset used in this research consists of a total of 80
images, with an approximate total storage size of 500 MB in PNG
format with an average resolution of 2048 x 1532 pixels. The
microscopic images of bacteria are captured using a Biobase
Trinocular Biological Microscope equipped with a digital camera.
The software tools used included Python 3.10 with OpenCV,
Scikit-learn, and Matplotlib libraries. This hardware and software
configuration ensured reliable processing speed and reproducibility
of the experimental results.

B. PREPROCESSING

Preprocessing is carried out on the data to clean it. It removes noise
and normalizes or standardizes the data so that it is ready to be used
in the next process. Fig. 4 shows the flow of the stage for bacterial
images preprocessing.

Multiple preprocessing steps have been performed to prepare
the bacterial images for subsequent analysis. First, the original
bacterial images have been read in RGB format using the cv2.im-
read function and subsequently converted to grayscale using
cv2.cvtColor. This conversion simplifies the analysis by reducing
data complexity and allowing the focus to be placed solely on pixel
intensity, which is essential for consistent image processing.
Second, to suppress image noise while preserving essential struc-
tural details, especially along the edges of objects, a median blur
operation is applied using a kernel size of 15 (cv2.medianBlur).
This technique effectively smooths the image without compromis-
ing the morphological characteristics of the bacteria. Third, mor-
phological opening is performed to remove small residual noise
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Fig. 4. Preprocessing stages on bacterial images.
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Fig. 5. Comparison of E. coli images before and after preprocessing.

that may remain after the blurring process. This operation consists
of two main steps: erosion followed by dilation, using a rectangular
kernel of size (18, 5), created with the cv2.getStructuringElement
function. The kernel defines the shape and area of the region to be
processed, ensuring cleaner and more accurate bacterial segmen-
tation. Finally, Contrast Limited Adaptive Histogram Equalization
(CLAHE) is used to improve the visibility of bacterial structures.
This technique helps make the details in the images clearer by
enhancing the contrast in the image with parameters clipLimit =
0.8 and tileGridSize = (8, 8). CLAHE adaptively enhances local
contrast, making bacterial features more distinguishable without
over-amplifying the contrast across the entire image, thus main-
taining a balanced visual representation. Through this preproces-
sing pipeline, the resulting image clearly distinguishes the bacteria
from the background of the culture plate, thereby facilitating more
effective segmentation in the subsequent stages of analysis.

Figure 5 presents a comparison of the original bacterial image
with the image after the preprocessing pipeline. In the original
image, the bacteria are still not clear enough to segment. After
applying the preprocessing steps, including grayscale conversion,
noise reduction through median blur, morphological opening, and
CLAHE, the bacterial objects become more visually distinct from
the background. This enhancement results in clearer bacterial
boundaries and more uniform contrast, which is crucial for improv-
ing the accuracy of subsequent segmentation and feature extraction
stages. The preprocessed image demonstrates reduced noise,
enhanced contrast, and improved focus on the relevant bacterial
structures, thereby ensuring better consistency and reliability in the
computational analysis that follows.

C. SEGMENTATION

The segmentation stage aims to separate bacterial objects from the
background as shown in Fig. 6. Thresholding was applied to
generate a binary mask for bacterial regions. Specifically, the
binary inverse thresholding method (cv2.THRESH_BINAR-
Y_INV) was used on the image enhanced by CLAHE to isolate
bacteria from the background. A threshold value of 124 was
selected to produce an appropriate binary mask, where darker
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Fig. 6. Image segmentation stages.

pixels (representing bacteria) are converted to white (255), and
brighter pixels (background) are converted to black (0).

This binary mask effectively highlights bacterial regions in the
image, providing a foundation for contour detection. Contours are
extracted from the binary mask using the cv2.findContours func-
tion, which identifies the outer boundaries of the bright regions in
the mask. Each detected contour was analyzed to measure its area
and perimeter. The circularity of each contour was then calculated
using the formula:

4 X X Area
perimeter’

Circularity = )

This metric determines how closely the shape of a contour
approximates a circle. Contours with circularity values greater than
0.6 and an area larger than 500 pixels are classified as round-shaped
bacteria. These contours are then drawn onto the output image as
part of the round bacteria mask. For the detection of rod-shaped
bacteria, an initial mask was generated from the binary threshold
result. This mask was further refined using morphological dilation
with a kernel size of 11 x 11. Dilation serves to emphasize the
separation between foreground (bacteria) and background regions
by expanding the bright areas. Following this, the watershed
algorithm was applied to further distinguish between bacterial
and non-bacterial regions. Marker-based segmentation was em-
ployed to label the foreground (bacteria), background, and
unknown regions. The watershed method then accurately seg-
mented rod-shaped bacteria by marking object boundaries more
distinctly. The final mask was produced by combining the water-
shed result with the previously obtained mask using bitwise
operations, effectively isolating rod-shaped bacteria while suppres-
sing background interference. As a result, the segmentation output
distinctly separates both rod-shaped and round-shaped bacteria,
making the image ready for subsequent feature extraction. This
segmentation approach enables precise bacterial shape isolation,
minimizes background noise, and sharpens the focus on key
bacterial regions within the image, thus enhancing the accuracy
of the analysis in the later stages.

D. FEATURE EXTRACTION

The feature extraction stage aims to obtain important attributes
from the segmented bacteria. These attributes include geometric,
texture, color, and moment information of the image, which will be
used for the next feature selection and detection process. Figure 7
shows the features used.
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Fig. 7. Image features used.

This section describes the extracted features used for bacteria
detection. Geometric features capture shape and size information
crucial for distinguishing bacteria from one another. Area and
perimeter are calculated using cv2.contourArea and cv2.arcLength,
while circularity and eccentricity describe the roundness and
elongation of bacterial shapes. Roughness, computed as the ratio
between the perimeter and the circumference of a circle with the
same area, indicates surface irregularity. The convex area derived
using cv2.convexHull helps identify shape concavity. Color fea-
tures are obtained by converting images to the HSV color space.
The average values of hue, saturation, and value channels reflect
color tone, vividness, and brightness, which are influenced by
staining techniques in microscopy. Texture features are extracted
using the Gray Level Co-occurrence Matrix (GLCM) on grayscale
images. These features include contrast, energy, homogeneity,
dissimilarity, and correlation, measured across multiple angles
and distances using graycomatrix and graycoprops. These features
capture spatial patterns in intensity. Opacity is computed as the
ratio of the maximum intensity of the bacteria to the maximum
pixel value (255), providing insight into visual darkness. The
moment’s features mathematically describe shape and pattern.
Hu Moments are invariant to rotation, scale, and translation, while
Zernike Moments, calculated with a fixed radius, represent inten-
sity patterns. The mean values of these moments are used as
descriptors. These features collectively enhance the accuracy of
the detection algorithm by combining geometric, color, texture, and
moment-based descriptors.

E. FEATURE SELECTION

The feature selection process in this study is performed using
TMGWO [26], an improved variant of the GWO algorithm. The
goal of TMGWO is to choose the most useful features for classifi-
cation. It achieves this by striking a better balance between
exploring new solutions and refining the best ones it has already
found [27]. This method helps us choose the best features, which
improves classification performance while also reducing the
amount of data we need to analyze [13].

TMGWO introduces a two-phase mutation mechanism into
the standard GWO framework. In the first phase, irrelevant features
are removed from the candidate feature subset, thereby eliminating
noise and reducing redundancy. In the second phase, potentially
valuable features that were previously unselected are reconsidered
and added back if they contribute positively to the model’s
performance [28,29]. This two-phase process ensures that the final
feature subset maximizes classification accuracy. The GWO algo-
rithm models the leadership hierarchy and hunting strategies of
gray wolves. The population is split into four groups, each
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representing a different level of dominance: Alpha (@), Beta (5),
Delta (6), and Omega (@). The alpha wolf signifies the best solution
identified to date, and the beta and delta wolves represent the
second- and third-best solutions, respectively [30]. The remaining
wolves are classified as omega wolves, which follow the guidance
of the top three leaders [31,32]. During the optimization process,
wolves update their positions relative to the prey, mathematically
imitating encircling, hunting, and attacking behaviors. The prey’s
position denotes the optimal solution, and the wolves iteratively
adjust their locations to converge toward it [33]. During hunting,
the wolves are able to encircle their prey [34], which can be
mathematically expressed as:

D=|CxX,-X(1)| )
X(t+1)=|X,(t) —AxD| 3)

where X » is the position of the prey and X represents the positions

of the wolves. The coefficient vectors, a and ¢, can be shown in the
following way:

- —_—
A = |2d x randl — 4 4)
. _
C =2 x rand2 5

where A and B are random vectors in [0,1]. Over iterations, a
decreases linearly from 2 to 0 as follows:

a=2—-1X # ©6)
iterations

The iterations parameter sets the maximum number of times a
process will repeat [13].

The alpha, beta, and delta wolves know where the prey might
be and can simulate the hunting process [13]. The other wolves
update their positions based on the best three solutions, which are
represented by the alpha, beta, and delta wolves. The following is
one way to put this:

X(t+1)= 3 (7
X, =X,-A;x(D,), Dy=|CxX,xX| ®)
X, =X, —A,x (Dy), Dy=|CyxX;xX| )
X3 =X;— Ay x (Dy), Dj=1C3xX;xX| (10)

As each wolf pursues its prey, it repositions itself between its
current spot and the prey’s location right before it attacks [13]. The
alpha, beta, and delta wolves separate from one another to find the
prey and then converge to attack it. Then, it can compel the wolves
to separate from the prey by using random values that are either
more than 1 or less than —1. Figure 8 shows the flowchart of the
TMGWO algorithm.

F. CLASSIFICATION

In the classification stage, the system identifies the type of bacteria
present in the input data. The classification process employs the
KNN algorithm, a widely used method for pattern recognition and
classification because of its simplicity and effectiveness. The

(Ahead of Print)



6 Ahmad lhsan et al.

Initialization

Load Dataset
Cross Validation

Update a, A and

C
Train KNN v
Update agent
Calculate the fitness function position
fo each search agent ¥
1 Change every search
PP agent to a binary
Initialize Xa, XB, X§ to the agent

best search agents
respectively

¥
Update Xa, Xp
and X§
v

Determine the GWO
parameters a, A and C

Apply two-phase
mutation to Xa

Fig. 8. Flowchart of TMGWO.

classification process was applied to the training data consisting of
four bacterial species: E. coli, P. aeruginosa, Proteus, and
S. aureus. The following steps outline the classification process
using KNN. First, the best value for the parameter k, representing
the number of nearest neighbors, is determined through experi-
mentation to achieve the highest classification accuracy. Once k is
selected, the distance between the query data (test sample) and each
sample in the training dataset is calculated. In this study, the
Euclidean distance metric is used to measure the similarity between
feature vectors. This metric quantifies the straight-line distance
between two points in a multidimensional space [34]. The squared
Euclidean distance is calculated using the following formula:

n

d(p.q) = /> (4 —p:)

i=1

)

The term d(p,q) is used to represent the distance that separates
two points, p and ¢, and n denotes the number of features in the
feature vector. After calculating the distances, the k smallest
distances are selected, and the most frequent class among these
neighbors is assigned as the classification result. This approach
enables the system to classify bacterial images efficiently based on
the selected features obtained from the feature selection process.
The KNN algorithm was chosen for this study due to its non-
parametric nature and ease of implementation, making it suitable
for classifying complex biological images where data distributions
may be unknown. Furthermore, its performance in conjunction
with the selected features was evaluated based on accuracy and
computational efficiency [35].

IV. RESULTS AND DISCUSSION
A. DATASET

For each bacterial class, a total of 325 training samples are used,
resulting in a balanced dataset. This approach ensures that the

Table I. Dataset

Bacteria Number of

class features Number of data training
E. coli 19 325

P. aeruginosa 19 325

Proteus 19 325

S. aureus 19 325

classification model receives an equal representation of each class,
which is important to prevent bias toward any particular bacterium
during the learning process. From each sample, 19 features were
extracted. These features represent the geometric, texture, color,
and moment characteristics of the bacteria, which are essential for
distinguishing between the different classes. The dataset specifica-
tions used in this study, including the number of features and
training samples for each bacterial class, are summarized in Table I:

Although each bacterial class has the same number of ex-
tracted features (19 features), the characteristics of these features
differ between classes. Both are Gram-negative bacteria; E. coli
and P. aeruginosa have distinct morphological structures that can
be used to differentiate them. For example, E. coli typically appears
as a short, rod-shaped bacterium, while P. aeruginosa is often
characterized by its longer, rod-like shape and the presence of polar
flagella, which give it motility. These structural differences are a
key feature in bacterial classification and identification. In contrast,
S. aureus is a Gram-positive bacterium characterized by its spheri-
cal (coccus) shape and grape-like clustering morphology. Proteus
species are also rod-shaped but are known for their swarming
motility patterns, which affect their texture and spatial distribution
in the images. These inherent biological and morphological differ-
ences are captured through geometric, texture, color, and moment-
based features, even though the number of features extracted
remains the same across all classes.

B. FEATURE SELECTION

The TMGWO algorithm is employed during the feature selection
phase to pinpoint the optimal subset of features from the bacterial
feature data [19]. This process is designed to enhance the efficiency
of bacterial detection by reducing the amount of data (data dimen-
sion) while making sure the classification accuracy remains high
[23]. The feature selection process carried out is explained as
follows. All experiments were carried out using the 10-fold cross-
validation approach, with 70% of the data allocated for training and
30% for testing. With four features selected by TMGWO, namely
roughness, hue, saturation, and value. This is the fitness value
obtained as shown in Fig. 9.

C. DETECTION RESULT

After the classification process using KNN, the results of bacterial
detection are tested on the testing data, with the bounding box of
E. coli bacteria in red, P. aeruginosa in green, S. aureus in yellow,
and Proteus in blue. This result is shown in Fig. 10.

D. RESULTS ANALYSIS

After all stages of detection are done, the next step is to analyze the
bacterial detection system to see the performance of KNN and
feature selection by TMGWO. Analysis is important to see the
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performance of the system, starting from detection accuracy, and

Fig. 10. Bacterial detection results on E. coli images.

then program execution time. Analysis is done on 10 testing
datasets.

1). DETECTION ACCURACY. It was found that the accuracy was
73.43% with feature selection and 67.29% without using feature
selection. Feature selection increases accuracy compared to the one
with no feature selection step. The graph is shown in Fig. 11. We
add more comprehensive summary for evaluation result by com-
paring KKN method using feature selection in Table II and without
feature selection in Table III.

2). EXECUTION TIME. In addition to accuracy, model execution
time is also an important factor in performance evaluation. Based
on the implemented code, the average execution time recorded for
both methods is shown in Table IV.

V. CONCLUSIONS

Based on the obtained results, several conclusions could be derived
from this study. The implementation of TMGWO in the feature
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Fig. 11. The comparison accuracy with and without feature selection.

Table Il. Evaluation result (KNN with feature selection)
Bacteria class Precision Recall Fi-score
E. coli 1 0.9776 0.9886
P. aeruginosa 1 0.4205 0.4906
Proteus 1 0.6318 0.5407
S. aureus 1 0.8407 0.8709
Table lll. Evaluation result (KNN without feature selection)
Bacteria class Precision Recall Fi-score
E. coli 1 0.9496 0.9692
P. aeruginosa 1 0.3897 0.5277
Proteus 1 0.5097 0.2081
S. aureus 1 0.7351 0.6984

Table IV. Execution time evaluation with and without feature
selection

Method

Without feature selection

Average execution time

354s
1.8 s

With feature selection

selection process effectively improved both detection speed and
accuracy compared to the system without feature selection. The
overall performance of the detection system became more optimal
as the feature selection process reduced the complexity of the
processed data. By applying feature selection, the system success-
fully enhanced the bacterial detection accuracy, reaching 73.43%,
representing a noticeable improvement compared to the results
without feature selection. In terms of execution speed, the use of
TMGWO-based feature selection significantly accelerated the
processing time. The average execution time was reduced from
35.4 seconds to 1.8 seconds, indicating a reduction of over 30
seconds. These results demonstrated that the applied feature selec-
tion technique successfully improved the efficiency of the bacterial
identification process.
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However, this research also faced several challenges. One of
the primary challenges was the limited quantity and variation of
microscopic bacterial image data, which constrained the model’s
generalizability to more diverse datasets. Additionally, differences
in staining quality, lighting, and background noise in microscopic
images still presented obstacles in achieving higher detection
accuracy.

For future work, it is recommended to expand the dataset with
more diverse and larger image samples, including different bacte-
rial strains and various imaging conditions. Moreover, the integra-
tion of advanced classification algorithms, such as DL-based
approaches, could further enhance accuracy. Combining TMGWO
with hybrid or ensemble feature selection methods might also yield
more robust and generalizable results.

The implementation of this method offers valuable benefits in
the field of microbiology, particularly for supporting rapid and
automated identification of bacterial species from microscopic
images. Such systems have potential applications in clinical labo-
ratories to accelerate diagnostic processes, reduce human error, and
improve the efficiency of detecting waterborne and pathogenic
bacteria in healthcare, environmental monitoring, and food safety
sectors.
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