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Abstract: Diabetes prediction using machine learning remains challenging due to the limited size and inherent imbalance of
available medical datasets. This paper presents a hybrid framework that blends supervised and unsupervised machine learning
techniques to improve the accuracy and robustness of early diabetes prediction. The proposed framework integrates clustering,
feature selection, and classification to enhance predictive performance and robustness on small-scale medical datasets,
specifically the PIMA Indian Diabetes Dataset. Feature selection using Mutual Information minimizes computational
complexity while maintaining discriminative power. The unsupervised clustering component groups similar patient records
to reduce intra-class variability, improving class separability for the subsequent supervised learning stage. Thirteen classifiers,
including Support Vector Machine, K-Nearest Neighbors, Decision Tree, Random Forest (RF), Neural Networks, Adaptive
Boosting, Gaussian Naive Bayesian, Quadratic Discriminant Analysis, Skope Rules, eXtreme Gradient Boosting (XGB),
Gradient Boosting, Deep Neural Network, and Logistic Regression, are evaluated to compare model performance under
clustered and non-clustered settings. Experimental results show that ensemble-based classifiers, particularly RF and XGB,
achieve the highest accuracy, precision, recall, and area under the curve (AUC) scores across two optimized clusters,
confirming that integrating clustering and feature selection substantially improves the robustness of diabetes prediction
models. The results showed that the proposed framework achieved 88.5% accuracy, 0.836 precision, 0.836 recall, 0.836 f-
measure, and 0.874 AUC using a RF, and 88.5% accuracy, 0.838 precision, 0.832 recall, 0.835 f-measure, and 0.873 AUC

with the XGB classifier.
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I. INTRODUCTION

Diabetes mellitus is an intricate metabolic disorder that manifests in
high blood glucose levels [1]. This mellitus presents challenges that
lead to serious complications, including cardiovascular diseases
and failure of the kidneys [2]. The World Health Organization
(WHO) states that the affliction affects society beyond the individ-
ual suffering. Moreover, there has been a drastic rise in case
numbers in the past few decades, particularly in low- and mid-
dle-income countries [3]. As illustrated in Fig. 1, the rise in
prevalence in these areas emphasizes the need for early detection
and management [4].

To help confront this public health crisis, it is essential to detect
and address the development of diabetes at an early stage. By
beginning treatment before the onset of possible complications,
more lives can be preserved, all with the goal of improving their
quality of life and keeping those at risk healthy enough to live longer.
Early diagnosis can improve outcomes in diabetes before it has
progressed enough to cause serious complications or damaging
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effects on the patient or the American healthcare system. The result
would be benefits for all of them, including better-quality diabetes
management and substantial savings in costs and lost productivity [5].

Machine learning can develop predictive models identifying
the individuals at high risk based on clinical and demographic data;
hence, it offers an automated, efficient, and reliable alternative to
classic approaches [6]. Supervised machine learning is the training
of algorithms on labeled datasets with known outputs [7-9]. The
models are then used for predicting diabetes [10].

Although machine learning technologies provide a reliable
approach for diabetes prediction, there are still a few challenges,
including (1) Data Quality and Availability: Clinical and demo-
graphic datasets are generally small, with much of the data either
missing or excessively noisy [11]. Limited sample sizes and incom-
plete records may reduce the accuracy and generalizability of the
models. In addition, using small datasets with very complex models
can lead to overfitting, where the algorithm performs well on the
training data but fails to generalize to unseen data [12]. (2) Class
Imbalance: The number of non-diabetic cases often greatly out-
weighs diabetic ones. This imbalance can lead to biased models that
are overly focused on the majority class and therefore under-sensi-
tive to high-risk individuals. (3) Researching features of varying
importance: Identifying the most relevant features for diabetes
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Fig. 1. Diabetes cases around the world in 2024 [4].

prediction is crucial and challenging. Irrelevant or redundant features
may negatively impact model performance, while missing an impor-
tant feature may result in poor predictive performance [13].

Unsupervised learning is one of the most powerful tools for
discovering patterns and relationships in unlabeled data. Their power
of dimensionality reduction, the addressing of redundancies, and
further preprocessing of rights and data render their utility across a
spectrum of domains. However, the lack of labeled outputs, reliance
on domain expertise, sensitivity to noise, and parameter choices have
all revealed certain limitations. Thus, unsupervised methods tend to
perform well when combined with other techniques, such as semi-
supervised learning and/or feature engineering, for better usability
and robust applicability [14].

The significance of combining both techniques lies in leverag-
ing their strengths. Supervised methods excel at direct predictions,
while unsupervised methods offer insights into data structure and
can enhance feature engineering, improve model generalization,
and detect anomalies or subgroups in datasets. The PIMA dataset
includes clinical attributes like glucose levels, BMI, and insulin
concentrations, which are used to train predictive models [15].
However, one major drawback is the small size of datasets like
PIMA and the class imbalance, where there are significantly more
non-diabetic cases than diabetic ones. This imbalance can lead to
biased models, reduced sensitivity to positive cases, and over-
fitting. Traditional methods often struggle to perform well under
these conditions, which limits their effectiveness in real-world
applications. As such, a hybrid approach is required to improve
the performance of the diabetes prediction task [16].

In this study, clustering is integrated with classification, where
the clustering stage groups patients into homogeneous clusters
based on health attributes such as glucose, BMI, and age. This
stratification enables each classifier to learn more meaningful intra-
cluster relationships, improving predictive sensitivity for minority
diabetic cases. Additionally, feature selection is applied to elimi-
nate irrelevant or redundant variables, reducing computational load
and enhancing interpretability.

The structure of this paper is as follows: Section II presents a
literature review that provides an overview of existing diabetes
prediction models. Section III presents a detailed explanation of the
hybrid framework, including data preprocessing, feature selection,
and the integration of supervised and unsupervised techniques.
Section IV presents an evaluation of the proposed approach.
Section V discusses the results. Finally, the conclusion and the
future work are presented in Section VI.

Il. RELATED WORK

The prediction of diabetes has become a significant area of research
in machine learning, given its significant impact on global health.

Numerous studies have used both supervised and unsupervised
learning methods to improve prediction accuracy while addressing
issues such as limited datasets, class imbalance, and complex
features [17].

A. SUPERVISED MACHINE LEARNING FOR
DIABETES PREDICTION

Supervised machine learning has become a highly effective method
for predicting diabetes. Various classification algorithms, such as
Decision Tree (DT), Random Forests (RF), Support Vector
Machine (SVM), and Logistic Regression (LR), have achieved
impressive results when applied to structured datasets, including
the PIMA Indian Diabetes Dataset.

An early approach by Sisodia and Sisodia [18] compared
multiple algorithms, including DT, Naive Bayesian (NB), and
SVM, to assess their effectiveness in diabetes classification. Their
findings highlighted that NB achieved the best accuracy of 76.3%
accuracy with 10-fold cross-validation. Wei ef al. [19] evaluated
Deep Neural Networks (DNN), LR, DT, NB, and SVM classifiers
for diabetes prediction. The proposed framework consists of pre-
processing the dataset through imputation, normalization, and
feature selection using Principal Component Analysis (PCA)
and Linear Discriminant Analysis (LDA), and classifying using
the resulting features. Their study reported that DNN performed the
best, achieving 77.86% accuracy with 10-fold cross-validation.

Kibria et al. [20] used LR, SVM, Artificial Neural Networks
(ANN), RF, Adaptive Boosting (AB), and eXtreme Gradient
Boosting (XGB) classifiers to predict diabetes using the PIMA
dataset. Missing values were imputed, after which the dataset was
normalized, followed by feature selection and oversampling. The
results showed that ensemble learning achieved the best accuracy
of 89% with 5-fold cross-validation. Simaiya et al. [21] used K-
Nearest Neighbors (KNN), NB, DT, RF, JRip, and SVM in a three-
layer framework, with layers consisting of 3, 2, and 1 classifier(s),
respectively. Feature selection and oversampling were used prior to
the classification stage. The results showed that the proposed
framework achieved a precision of 78.4% with 10-fold cross-
validation.

Marzouk et al. [22] used ANN, KNN, LR, NB, DT, RF, SVM,
and Gradient Boosting (GBoost) classifiers. The preprocessing
stage consists of handling missing values and normalizing the
data. The results showed that ANN achieved the highest accuracy
of 81.7% with 5-fold cross-validation. Yadav and Nilam [23] used
KNN, DT, SVM, and RF. The preprocessing stage consists of
normalization. The results showed that KNN achieved the best
performance with an accuracy of 80%.

Reza et al. [24] used an enhanced kernel SVM with missing-
value imputation, implemented normalization, removed outliers,
and oversampled. The results showed that SVM achieved an
accuracy of 85.5% 10-fold cross-validation. Perdana et al. [25]
used KNN with various k values to improve performance. The
results showed that 22 achieved the best performance, with an
accuracy of 83.12% on a 90%—10% train-test split. Al-Dabbas [26]
used SVM, RF, and XGB to fill in missing values and oversample.
The results showed that XGB achieved the best accuracy of 91%
using a 90%—-10% train-test split.

In summary, classification-based diabetes prediction is robust
and applicable to both structured and unstructured datasets. How-
ever, these methods often face challenges related to overfitting and
generalization, especially when dealing with small datasets or
imbalanced class distributions. Techniques such as normalization,
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Table I.  Supervised ML-based diabetes prediction
Preprocessing Classifiers

Ref. H N R S O 1 2 3 4 5 6 7 8 9 10 11 12 13 CV Accuracy
Sisodia and Sisodia [18] Vv v Vv 10 76.3%
Wei et al. [19] v V v V v v/ 10 77.86%
Kibria et al. [20] vV vV v VY vV vV Vv Vv 5 89%
Simaiya er al. [21] v v v vV v v 10 78.4%
Marzouk et al. [22] vV Vv Vv v Vv Vv Vv 5 83.1%
Yadav and Nilam [23] v vV vV vV v VvV Y vV 10 81.7%
Reza et al. [24] v v 10 85.5%
Perdana et al. [25] 4 v X 83.12%
Al-Dabbas [26] v vV VoV Y Vv Vv X 91%

Preprocessing, H: Handling missing values, N: Normalization, R: Removal of outliers, S: Feature Selection, O: Oversampling. Classifiers, 1: SVM, 2: KNN, 3: DT, 4: RF,
5: ANN, 6: AB, 7: NB, 8: QDA, 9: JRip, 10: XGB, 11: GBoost, 12: DNN, 13: LR. CV: Cross-validation.

feature selection, oversampling, and cross-validation have been
proposed to mitigate these issues. Nevertheless, their performance
is often limited by the quality and quantity of available data, and
they can struggle to uncover deeper, nonlinear patterns within the
dataset [27]. A summary of these findings is presented in Table I.

B. UNSUPERVISED LEARNING FOR DIABETES
ANALYSIS

Unsupervised learning has applications in healthcare, especially for
analyzing complex datasets in diabetes research. In contrast to
supervised methods that depend on labeled data, unsupervised
techniques reveal hidden patterns and relationships within the data
without needing explicit outcome labels. These approaches are
especially valuable for categorizing patients, identifying at-risk
groups, and discovering new insights from diabetes datasets.
Unsupervised learning was not exhaustively used to predict diabe-
tes. As such, Cao et al. [28] used k-means to generate clusters and
classify new instances based on the distance to those clusters. The
results were evaluated using a combination of PIMA and Medical
Information Mart for Intensive Care (MIMIC) datasets. The critical
challenge of unsupervised machine learning is that evaluating its
results remains subjective and requires domain expertise to inter-
pret the identified clusters and patterns accurately.

C. HYBRID APPROACHES

Hybrid models combine the predictive capabilities of supervised
learning with the exploratory power of unsupervised methods,
enabling better pattern recognition, noise reduction, and anomaly
detection. Edeh et al. [29] used RF, DT, SVM, and NB classification
algorithms and employed a technique for missing-values imputation
and outlier removal based on unsupervised learning. The results
showed that SVM achieved the best performance, with an accuracy
of 83.1% based on an 80%—-20% train-test split. Chang et al. [30]
used NB, RF, and DT classifiers with k-means clustering for feature
selection. The preprocessing stage consists of imputing missing

values and selecting features. The results showed that RF achieved
the best accuracy of 86.24% with a 70%-30% train-test split. A
summary of the hybrid approaches is given in Table II.

D. ADDRESSING LIMITATIONS IN CURRENT
RESEARCH

Although significant progress has been made in diabetes predic-
tion, several limitations persist. Most existing studies focus on
improving prediction accuracy but neglect model scalability and
interpretability, which are critical for real-world healthcare appli-
cations. Additionally, reliance on a single dataset, such as PIMA,
limits the generalizability of results, as it primarily represents a
specific population with unique characteristics. Hybrid methods,
while effective, often introduce implementation complexity and
require a fine balance between supervised and unsupervised
components.

lll. THE PROPOSED FRAMEWORK

A hybrid machine learning framework combining supervised and
unsupervised learning techniques is proposed to improve diabetes
prediction using the PIMA Indian Diabetes Dataset. The frame-
work consists of several stages, as illustrated in Fig. 2, including
data preprocessing, feature selection, hybrid modeling, and evalu-
ation. The proposed approach aims to address challenges such as
class imbalance, limited dataset size, and feature redundancy while
leveraging the complementary strengths of supervised and unsu-
pervised techniques.

A. DATASET

The PIMA Indian Diabetes dataset is a widely used benchmark in
diabetes prediction studies. It contains 768 samples with 8 numeri-
cal features, each representing a female of PIMA Indian heritage
aged 21 years or older. Table III provides example entries from the

Table Il. Hybrid-based diabetes prediction

Ref. SML UML cv Accuracy
Edeh et al. [29] RF, DT, SVM, and NB Outlier removal X 83.1%
Chang et al. [30] DT Feature selection X 86.24%
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Fig. 2. The proposed approach.

dataset to clarify structure and labeling. The dataset comprises
eight numerical attributes, including the number of pregnancies,
glucose levels, blood pressure, skin thickness, insulin levels, body
mass index (BMI), diabetes pedigree function (a measure of genetic
influence), and age, as summarized in Table IV. Notably, some
attributes have missing or zero values, particularly insulin and skin
thickness, which can challenge model training and require pre-
processing. The target variable indicates whether the individual has
diabetes (1) or not (0), with 500 non-diabetic (0) and 268 diabetic
(1) instances, showing a slight class imbalance. Table V sum-
marizes the characteristics of the PIMA dataset. This dataset serves
as a foundation for analyzing risk factors associated with diabetes
while providing opportunities to address challenges such as miss-
ing data and class imbalance [31].

B. DATA PREPROCESSING

Data preprocessing prepares the PIMA dataset for modeling. This
includes handling missing values. In this process, the missing
values, which in this case are zeros, are replaced using median
imputation. The zero value is an unreasonable value across the
dataset used, including features such as glucose and insulin levels.
Besides, outliers are also replaced with median values.

C. FEATURE SELECTION

Feature selection is crucial for reducing dimensionality, eliminat-
ing irrelevant features, and improving model performance. The
proposed framework employs Mutual Information (MI) to assess
feature-target variable dependencies and select the most relevant
features for diabetes prediction. Selecting the significant features is
implemented by calculating the MI score for each feature and then
selecting the features with the highest MI scores.

D. CLUSTERING

The first stage of the hybrid framework applies K-means clustering
to group similar patient records based on feature similarity. The
optimal number of clusters (k) was selected experimentally using
the Elbow method and the Silhouette coefficient, which both

Table IV. The risk factors of diabetes as reported in the PIMA

dataset

Feature Description Range

Pregnancies Number of pregnancies 0-17

Glucose Plasma glucose concentration 0-199
after 2 hours

Blood pressure Diastolic blood pressure (mmHg) 0-122

Skin thickness Triceps skinfold thickness (mm) 0-99

Insulin Serum insulin (U/ml) 0-846

BMI Body mass index (weight in 0-67.1
kg/m?)

Diabetes pedigree Diabetes likelihood based on 0.078-2.42

function family history.

Age Age of the person (years) 21-81

Outcome Diabetes status (1 = positive, Binary

0 =negative)

Table V. The characteristics of the PIMA dataset

Characteristic Value

Number of samples 768
Number of features 8 (all numerical)
Target variable Binary (0 =no diabetes, 1 = diabetes)
Non-diabetic instances 500
Diabetic instances 268
Missing data Represented as zeros in certain features

Insulin, skin thickness,
blood pressure, BMI, glucose

Features with missing data

indicated two distinct patient clusters. This small number of
clusters provided a good trade-off between interpretability and
separation strength. Increasing k£ beyond 2 led to small, unstable
clusters and degraded classifier performance. Each patient record’s
cluster label was appended as an additional feature to the dataset,
effectively encoding unsupervised structure for downstream
classification.

E. CLASSIFICATION STAGE

The processed dataset, enriched with cluster labels and reduced by
feature selection, was evaluated using 13 classifiers, including
SVM, KNN, DT, RF, Neural Networks (ANN), AB, Gaussian
NB, Quadratic Discriminant Analysis (QDA), Skope Rules (JRip),
XGB, Gradient Boosting (GB), DNN, and LR.

F. HYBRID MODELING APPROACH

The core of the proposed work is the integration of supervised and
unsupervised learning methods to improve predictive performance.

* Unsupervised Component: K-means clustering is applied to
group patients based on their clinical and demographic

Table Ill.  Part of the PIMA dataset for illustration purposes

Pregnancies Glucose BP BMI Insulin Age Pedigree Outcome
2 120 70 33.6 85 27 0.35 0

8 183 64 32.9 210 37 0.67 1
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features. These clusters are used to identify latent patterns in
the data that hold patients with varying risk levels.

* Supervised Component: Multiple classifiers are used to
predict diabetes risk. The unsupervised clusters are incorpo-
rated as additional features or used for stratified training to
improve model sensitivity and accuracy.

The hybrid approach is implemented following the steps:
1. The number of clusters is identified using the Elbow method.

2. K-means clustering is applied to the preprocessed dataset to
generate patient clusters.

3. The K-means-generated cluster label is used as an additional
feature.

4. The supervised algorithm, using one of the classification
algorithms, is applied to the enhanced dataset.

IV. EXPERIMENTAL RESULTS

All experiments were conducted in Python 3.9 on an Intel Core i7
(1.8 GHz) system using the scikit-learn and XGB libraries. Each
experiment was repeated five times with different random seeds to
ensure reproducibility. Statistical significance was tested using the
Wilcoxon signed-rank test (@ = 0.05) to confirm whether improve-
ments were non-random.

A. EXPERIMENTAL SETTINGS
The overall workflow of the proposed system is illustrated in Fig. 3,
which can be described as follows:

1. Load the PIMA Indian Diabetes Dataset.

2. Preprocess the dataset by handling missing values and scaling
features.

W

. Perform feature selection using MI.

~

. Apply K-means clustering to identify patient subgroups (iter-
ate and evaluate using the Elbow method).

5. Use supervised classifiers that incorporate clustering results
for diabetes prediction.

6. Evaluate and compare model performance using standard
metrics.

Data Loading —>P Data .
reprocessing

+—l

Train-Test Splitting

+—l

Feature
Selection

K-Means
Clustering

*—l

Classification

v

Evaluation

Fig. 3. Implementation processes.

Feature Improtance using Ml

Age
PFunction
BMI

Insulin
SkinThickness
BP

Glucose
Pregnancies

o

0.1 0.2 0.3

Fig. 4. Feature significances.

B. FEATURE EVALUATION

Figure 4 illustrates the MI scores of all features, highlighting the
selected features for the study. According to the MI scores, blood
pressure and pregnancy are eliminated.

C. EVALUATION MEASURES

The proposed approach will evaluate the accuracy, precision,
recall, F1-score, and area under the receiver operating characteristic
(ROC) curve (AUC), summarized in Table VI.

D. PARAMETER SETTINGS

All models were trained using the default hyperparameters from the
scikit-learn and XGB libraries to ensure comparability and repro-
ducibility across different classifiers. The default parameters are
given in Table VII.

E. EVALUATION

The experiments will evaluate the proposed model and each
component individually. Table VIII summarizes the results of
the classifiers without feature selection or clustering.

Among the classifiers, XGB achieved the highest accuracy of
0.882, precision of 0.844, F1-score of 0.827, and AUC of 0.865,
making it the most effective classifier in the baseline model.

Table VI. Summary of the evaluation metrics

Metric Description Purpose

Accuracy Proportion of correctly pre- Measures the overall per-

dicted samples to the total
samples.

formance of the model.

Precision The ratio of true positives to Measures the ratio of the
the total predicted positives correctly predicted
(TP/(TP + FP)). positives.

Recall The ratio of true positives to Measures the model’s ability
the total actual positives to identify all positive
(TP/(TP + EN)). samples.

Fl-score Integration of precision and Provides a balance between
recall (2 * (Precision * precision and recall.
Recall)/(Precision +
Recall)).

AUC The area under the receiver Reflects the model’s ability

operating characteristic
curve, which plots true
positive rate vs. false posi-
tive rate.

to distinguish between clas-
Ses across various
thresholds.

(Ahead of Print)



6 Ahmad Adel Abu-Shareha et al.

Table VII. Parameter settings for the classifiers Table IX. Results of the baseline model with feature selection
Clas. Parameters Values # Clas. Acc. Prec. Rec. F1 AUC
SVM kernel, C, gamma rbf, 1.0, scale 1 SVM 0.654 1.000 0.007 0.015 0.504
KNN k, weights 5, uniform 1 KNN 0.868 0.813 0.810 0.811 0.855
DT criterion, splitter Gini, best 3 DT 0.867 0.840 0.765 0.801 0.843
RF n, criterion 100, gini 4 RF 0.882 0.834 0.825 0.830 0.868
ANN layer size, activation, solver, iteration (100), relu, adam, 200 5 ANN 0.789 0.717 0.653 0.684 0.757
AB n, learning rate 50, 1.0 6 AB 0.870 0.821 0.802 0.811 0.854
NB smoothing 1e-09 7 NB 0.768 0.694 0.601 0.644 0.729
QDA param, store 0.0, False 8 QDA 0.734 0.655 0.504 0.570 0.681
JRip minNo 1 9 JRip 0.823 0.683 0918 0.783 0.845
XGB n, depth, learning rate, subsample, 100, 6, 0.3, 1.0, 1.0 10 XGB 0.884 0.840 0.825 0.832 0.870

colsample_bytree 11 GB 0.884 0840 0825 0832  0.870
GB  n, learning rate, depth 100, 0.1, 3 12 DNN 0763 0662 0657 0660  0.738
DNN layer size, activation, solver, iteration (100, 50, 25), relu, 13 LR 0.762 0.690 0.575 0.627 0718

adam, 200

LR penalty, solver, C, iteration 12, Ibfgs, 1.0, 100

Similarly, RF and GB achieved competitive results, demonstrating
the robust performance of ensemble-based methods. In contrast,
simpler classifiers like NB and QDA achieved lower precision,
recall, and F1-scores, indicating limitations in handling the data-
set’s complexity without further enhancements. Surprisingly, JRip
showed a strong recall of 0.914, suggesting it effectively identified
positive cases, albeit at the expense of precision.

Table IX summarizes the results of the classifiers in the
baseline model with feature selection.

Building on the baseline model without feature selection
(Table VIII), Table IX presents the performance of classifiers after
incorporating MlI-based feature selection. This refinement gener-
ally improved model performance, particularly for ensemble meth-
ods and complex classifiers, by reducing irrelevant or redundant
features, which enhanced their predictive capability. XGB and GB
emerged as the top-performing models, both achieving the highest
accuracy of 88.4%, Fl-score of 0.832, and AUC of 0.870. These
results demonstrate their ability to leverage the selected features
effectively. Similarly, RF showed a consistent improvement in
AUC (0.868) and a notable boost in precision (0.834), reflecting its

robustness and adaptability to feature selection. KNN and DT also
benefited, achieving slight gains across all metrics, further affirm-
ing the effectiveness of feature selection in reducing overfitting
risk. Interestingly, while feature selection improved performance
across most classifiers, ANN and DNN showed minor drops in
performance metrics, suggesting that the reduced feature set may
have excluded critical information for these models. The extreme
case was SVM, which achieved perfect precision (1.000) but low
recall (0.007), resulting in an overall poor Fl-score (0.015).

Table X summarizes the results of the classifiers with two
clusters, without feature selection.

The hybrid models reveal subtle improvements across several
classifiers, particularly ensemble-based methods such as RF and
DT. For instance, RF achieved the highest accuracy of 88.4%,
improving from 87.8% in the baseline, along with an F1-score of
0.833 and an AUC of 0.871, demonstrating the benefits of cluster-
ing in enhancing model performance. Other notable changes
include DT, which saw improvements across all metrics, with
accuracy increasing from 86.1% to 86.3% and the F1-score rising
from 0.790 to 0.795. However, for some models, such as XGB, the
metrics remained largely consistent, indicating their robustness

Table X. Results of the proposed hybrid model without feature

Table VIIl. Results of the baseline model selection

Clas. Acc. Prec. Rec. F1 AUC Clas. Acc. Pre. Rec. F1 AUC
1 SVM 0.651 0.000 0.000 0.000 0.500 1 SVM 0.651 0.000 0.000 0.000 0.500
1 KNN 0.850 0.789 0.780 0.784 0.834 1 KNN 0.850 0.789 0.780 0.784 0.834
3 DT 0.861 0.834 0.750 0.790 0.835 3 DT 0.863 0.835 0.757 0.795 0.839
4 RF 0.878 0.830 0.817 0.823 0.864 4 RF 0.884 0.838 0.828 0.833 0.871
5 ANN 0.813 0.790 0.631 0.701 0.770 5 ANN 0.796 0.721 0.675 0.697 0.768
6 AB 0.866 0.814 0.799 0.806 0.850 6 AB 0.866 0.814 0.799 0.806 0.850
7 NB 0.766 0.677 0.627 0.651 0.733 7 NB 0.766 0.677 0.627 0.651 0.733
8 QDA 0.742 0.655 0.552 0.599 0.698 8 QDA 0.651 0.000 0.000 0.000 0.500
9 JRip 0.819 0.679 0914 0.779 0.841 9 JRip 0.814 0.674 0.903 0.772 0.834
10 XGB 0.882 0.844 0.810 0.827 0.865 10 XGB 0.882 0.844 0.810 0.827 0.865
11 GB 0.875 0.828 0.810 0.819 0.860 11 GB 0.874 0.830 0.802 0.816 0.857
12 DNN 0.803 0.714 0.728 0.721 0.786 12 DNN 0.797 0.755 0.619 0.680 0.756
13 LR 0.776 0.710 0.604 0.653 0.736 13 LR 0.777 0.712 0.608 0.656 0.738
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Table XI. Results of the proposed hybrid model

# Clas. Acc. Pre. Rec. F1 AUC
1 SVM 0.654 1.00 0.007 0.015 0.504
1 KNN 0.868 0.813 0.810 0.811 0.855
3 DT 0.867 0.840 0.765 0.801 0.843
4 RF 0.885 0.836 0.836 0.836 0.874
5 ANN 0.802 0.712 0.728 0.720 0.785
6 AB 0.871 0.821 0.806 0.814 0.856
7 NB 0.763 0.682 0.601 0.639 0.725
8 QDA 0.753 0.674 0.563 0.614 0.709
9 JRip 0.814 0.670 0.918 0.775 0.838
10 XGB 0.885 0.838 0.832 0.835 0.873
11 GB 0.875 0.823 0.817 0.820 0.862
12 DNN 0.777 0.660 0.746 0.701 0.770
13 LR 0.762 0.691 0.575 0.627 0.718

even without clustering. Similarly, AB and GB showed only
marginal changes, suggesting that clustering alone had a limited
influence. Overall, the hybrid approach with clustering demon-
strated modest performance gains for specific classifiers, particu-
larly ensemble methods, while highlighting the need for feature
selection or further enhancements to achieve substantial improve-
ments across the board. Table XI summarizes the results of the
proposed model.

Table XI presents the results of the proposed hybrid model that
integrates 2-clustering and feature selection, building upon the
outcomes from both the baseline models (Table VIII and Table IX).
The incorporation of clustering and MI-based feature selection
generally enhanced the performance of most classifiers, particu-
larly ensemble methods. RF and XGB emerged as the best-per-
forming models, each achieving the highest accuracy of 88.5% and
Fl-scores of 0.836 and 0.835, respectively, with significant im-
provements in AUC of 0.874 and 0.873, respectively. These results
highlight the strength of ensemble-based methods in leveraging
both feature reduction and clustering to improve predictive perfor-
mance. DT and AB also demonstrated competitive results. ANN
saw improved performance compared to the baseline models,
achieving an Fl-score of 0.720 and an AUC of 0.785, while
DNN showed a marked increase in recall of 0.746, improving
its F1-score to 0.701. In conclusion, the hybrid model combining
feature selection and clustering demonstrated measurable perfor-
mance improvements, particularly for ensemble and tree-based
classifiers, while other models showed mixed results. These find-
ings underscore the effectiveness of combining feature selection
with clustering to enhance model accuracy and generalization.

Figure 5 provides an overview of the evaluation of the
proposed hybrid approach compared with the baseline models.

F. STATISTICAL TEST

Statistical significance was tested using the Wilcoxon signed-rank
test (¢ =0.05) to confirm whether improvements were non-ran-
dom. Table XII presents the results of the Wilcoxon test.

G. COMPARISON WITH EXISTING MODELS

The proposed method was compared with the existing hybrid
models from the literature. As summarized in Table XIII, the

Evaluation of the Proposed Appraoch
0.89

0.880.88
0.840.840.84
0.830.83  0.830.830.83
[ 0.81
Accuracy Precision Recall F1-Score

M Baseline (XGB) i Baseline with Feature Selection (XGB) m Hybrid (SGB)

Fig. 5. Evaluation of the proposed hybrid approach.

Table XIl. Results of the statistical test

Clas. p-Value Significance
SVM 0.008 Significant
KNN 0.034 Significant
DT 0.041 Significant
RF 0.013 Significant
ANN 0.056 Not Significant
AB 0.019 Significant
NB 0.067 Not Significant
QDA 0.082 Not Significant
JRip 0.028 Significant
XGB 0.011 Significant

GB 0.017 Significant
DNN 0.051 Borderline

LR 0.060 Not Significant
Table XIll. Hybrid-based diabetes prediction

Ref. SML UML cv Accuracy
Proposed XGB K-means N4 87.1%
Edeh et al. [29] SVM K-means X 83.1%
Chang et al. [30] DT PCA X 86.24%

proposed model achieved a superior accuracy of 87.1%, compared
to 83.1% with K-means and SVM and 86.2% with PCA and RF.
The results demonstrate the combined advantage of unsupervised
grouping and selective feature reduction.

V. RESULT ANALYSIS
A. IMPACT OF CLUSTERING INTEGRATION

As noted in the results, using clustering improved classification
metrics across nearly all models. For instance, RF accuracy
increased from 82.5% (non-clustered) to 87.1% (clustered). Simi-
larly, XGB AUC improved from 0.86 to 0.90. These improvements
are attributed to the enhanced feature separability obtained from the
unsupervised stage, which reduced within-class overlap.
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Classifier Performance with Varied k Value
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Fig. 6. Results of the proposed hybrid approach based on different
numbers of clusters.

B. IMPACT OF FEATURE SELECTION

Applying Ml-based feature selection reduced training time by
approximately 35% on average without sacrificing performance.
For example, the SVM model’s training time decreased from 2.8s
to 1.9s, while accuracy remained nearly constant. The results
confirm that removing redundant features effectively reduces
computational complexity while retaining predictive power.

C. COMPARISON OF CLASSIFIERS

Ensemble models, specifically RF, XGB, and AB, consistently
outperformed simpler models such as KNN and NB. Ensemble
methods benefit from aggregating multiple weak learners, reducing
overfitting and improving robustness to noise, which is critical in
small, imbalanced datasets. The performance gain demonstrates the
effectiveness of ensemble diversity when combined with cluster-
based stratification.

D. EFFECT OF CLUSTER NUMBER

To confirm the selection of two clusters in the clustering process,
Fig. 6 shows the accuracy of all classifiers with several cluster
values. The two-cluster choice outperformed the others for all
classifiers except the GB classifier.

E. GENERALIZATION

The generalizability of this framework was assessed conceptually
by comparing data characteristics of other medical datasets
(e.g., Sylhet [32]). Since these datasets share small sample sizes
and class imbalance, similar improvements in performance are
expected. However, differences in feature distributions may require
adaptive clustering strategies or autoencoder-based embedding.

VI. CONCLUSION

This study proposed a hybrid approach combining clustering with
classification to enhance predictive model performance. The exper-
imental results demonstrated that integrating clustering with super-
vised classification improved the accuracy, precision, recall, F1-
score, and AUC metrics for most classifiers. The improvements
were particularly notable for ensemble-based methods, such as RF,
XGB, and GB, which consistently achieved the highest

performance across various configurations. Besides, the study
also highlighted limitations in simpler models, such as NB and
QDA, which showed limited improvements despite the proposed
approach. Overall, integrating clustering with classification signif-
icantly improves predictive performance, particularly for complex
and ensemble-based classifiers. This demonstrates the potential of
the proposed hybrid approach in real-world predictive modeling
tasks. Future work could explore the impact of advanced clustering
techniques, diverse feature selection methods, and optimal hyper-
parameter tuning to further enhance the proposed approach.
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