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Abstract: As one chemical composition, nicotine content has an important influence on the quality of tobacco leaves. Rapid and
nondestructive quantitative analysis of nicotine is an important task in the tobacco industry. Near-infrared (NIR) spectroscopy as
an effective chemical composition analysis technique has been widely used. In this paper, we propose a one-dimensional fully
convolutional network (1D-FCN) model to quantitatively analyze the nicotine composition of tobacco leaves using NIR
spectroscopy data in a cloud environment. This 1D-FCN model uses one-dimensional convolution layers to directly extract the
complex features from sequential spectroscopy data. It consists of five convolutional layers and two full connection layers with
the max-pooling layer replaced by a convolutional layer to avoid information loss. Cloud computing techniques are used to
solve the increasing requests of large-size data analysis and implement data sharing and accessing. Experimental results show that
the proposed 1D-FCN model can effectively extract the complex characteristics inside the spectrum and more accurately predict
the nicotine volumes in tobacco leaves than other approaches. This research provides a deep learning foundation for quantitative
analysis of NIR spectral data in the tobacco industry.
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I. INTRODUCTION
Tobacco and its products, such as cigarettes and cigars, are special
commodities that satisfy physiological and psychological needs of
consumers. Tobacco leaves contain nicotine that has significant
impact on the aroma and flavor of tobacco products [1], [2]. For
example, products with low-percentage nicotine volumes can lead
to a dark or harsh aroma, whereas excessive nicotine can make the
products taste too bitter [3]. In addition, high nicotine levels can
have negative effects on the brain and physical health [4]. There-
fore, measuring and controlling nicotine volumes are crucial for
producing tobacco products with desirable qualities. Traditional
methods of detecting and measuring nicotine volumes require
several steps. First, the tobacco leaves need to be ground into
powder, which are then mixed with various chemical reagents to
generate several compounds for measurement [5], [6]. Most
of these steps are time-consuming, labor-intensive, and require
expensive lab equipment. Furthermore, traditional measurement
approach is tobacco leaf destructive [7]. Therefore, it is advanta-
geous to utilize an efficient and nondestructive analytical method to
determine the content of nicotine in tobacco leaves. Tobacco leaves
are composed of various chemical substances. The spectrum of
tobacco leaves contains the information of certain chemical com-
positions. This paper mainly focuses on analyzing nicotine.

Near-infrared (NIR) spectroscopy has been proven effec-
tive and nondestructive for quantitative material analysis and

identification tasks [8], [9]. NIR spectroscopy is based on molecu-
lar overtone and combination vibrations. The spectral data acquired
from NIR sensors contain abundant structural information, in
which dissimilative and complex feature information can be
extracted [10], [11]. Compared with traditional measuring ap-
proaches, an NIR-based approach has several advantages: (1) it
is nondestructive and does not require any direct contact with the
investigated objects; (2) it is efficient, with high detection/identifi-
cation speed; (3) it can detect multiple items on a single sample.
Fig. 1 shows the spectral data of tobacco leaves from an NIR
device, Thermo Antaris II, with multiple sensors. The wavelengths
of acquired NIR data range from 10000−1 to 3800−1 cm.

The absorbance values of different wavelengths indicate the
existence of certain substances. A larger value indicates a higher
percentage of a certain component within a sample. Table I shows
the correlation between the wavelengths and the chemical consti-
tuents of tobacco, which characterize the nicotine compositions of
tobacco leaves.

Spectroscopy data only provide the observation of a sample’s
chemical materials. Further analysis is required to unveil object
detailed structures and precise volumes. Conventionally, machine
learning-based methods, such as support vector machine (SVM)
[5], partial least squares (PLS) [12], and their variants, have been
applied to analyze the spectral data. However, these approaches
require substantial empirical parameters, which make the learned
model less robust and not viable for a wide range of application
domains. Deep learning-based approaches [13], [14] have been the
mainstream in the fields of image processing and computer vision.
For example, the convolutional neural network (CNN) [15] hasCorresponding author: Guanqiu Qi (e-mail: qig@buffalostate.edu).
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powerful feature-learning ability and has been largely used in
classification and regression tasks [16], [17]. More recently, there
are studies that have been reported to use deep learning for spectral
data analysis. Specifically, by processing a sequence of NIR
spectral data via a trained deep network model, the high-level
complex structures of various chemical substances can be extracted
and detected [18]. However, few deep learning approaches are
available for detecting nicotine in the tobacco industry.

Following the development of Internet techniques and cloud
infrastructure, more and more transaction processing systems have
been hosted in cloud platforms [19]–[21]. As one of them, the
traditional tobacco transactions are moved to a cloud-based trans-
action platform. Each batch of tobacco leaves has its own personal
identity, which contains the related physical features, cultivation,
and weather conditions. The cloud-based transaction platform can
refine the analysis process of tobacco leaves. Everything related to
a tobacco leaf can be traced. However, a large amount of tobacco
data need to be processed. To classify the quality of tobacco leaves
objectively, artificial intelligence methods are applied to the anal-
ysis of the related tobacco data. The corresponding analysis
requires a large number of computational resources. Unfortunately,
the traditional server-based platforms cannot provide a large
number of computational resources in a reasonable price range.
However, cloud-based platforms can use numerous and powerful
computation resources within reasonable costs [22]–[24] to

implement the analysis of large-size tobacco data. Additionally,
the related data from tobacco growers, tobacco markets, cigarette
factories, and tobacco supervision department can be processed and
shared in a cloud-based platform. Each user of the cloud-based
platform can provide their own tobacco data and access other data.

Therefore, in this work, we propose a fully convolutional
network (FCN) for accurately analyzing nicotine content in
tobacco leaves from NIR data. FCN is able to process data from
multiple windows in a single step. The network is trained end to
end and outputs a regressed number related to a chemical sub-
stance. In the original FCN, the data dimension is reduced by a
pooling layer, which can ease the learning burden and enhance the
model nonlinearity for image segmentation tasks [25]. In this work,
the NIR spectroscopy data at individual wavelength points are
highly correlated [26]. Pooling operation could cause spectral
information to be missing. Thus, we replace the max-pooling layer
with a convolutional layer to avoid data loss in the feature extrac-
tion process. This approach has the advantage of regressing values,
since the predictions can have enough aggregated information.
During the training, mean square error (MSE) is used as the
regression objective (loss function) that can penalize the measure-
ment differences from the ground truth.

In our experiments, the optimized one-dimensional FCN (1D-
FCN) model is compared with existing analysis methods [5], [6]
and a regular CNN model. The results demonstrate that the
proposed model is more effective. The main contributions of
this paper are threefold:

1. Apply 1D-FCN network to directly process the long sequence
NIR spectral data to avoid data loss during preprocessing.

2. Replace the max-pooling layer in the original FCN network to
preserve the information integrity. Thus, the relevance of
spectroscopy feature information can be retained, and the
prediction accuracy of the model is improved.

3. The network is trained end to end and outputs the nicotine
percentage within the tobacco leaf samples in a single step.

4. A cloud-based framework is proposed, which uses the compu-
tational resources of cloud computing to solve the scalability
problems in nicotine analysis. Data sharing and accessing are
implemented by the proposed cloud-based framework.

The structure of the rest of this paper is as follows: Section II
provides some related work; Section III presents the proposed
cloud-based framework. The proposed network framework is
described in Section IV; In Section V, data and the experimental
results are presented; and Section VI draws the conclusion of
this work.

II. RELATED WORK
NIR-based approaches have been frequently used for rapidly and
reliably revealing chemical composition from food and plants [27].
From the literature, machine-learning methods, such as PLS [6],
SVM [5], and their variants, have been widely used to quantita-
tively determine the volume of chemical substances fromNIR data.
Zhang et al. [5] proposed a wavelet transformation (WT) SVM
method where the spectral data are prepossessed by WT and fed
into SVM to find the chemical constituents of tobacco samples.
Jing et al. [28] applied a multiblock PLS method to determine
the moisture in corn and the nicotine and sugar in tobacco leaves.
In that method, the spectral data are divided into subblocks along
the wavelengths, and PLS is used to build the submodel for each

Fig. 1. Raw near-infrared (NIR) spectra of samples.

TABLE I. Correlation between the Wavelengths and
the Chemical Substances of Tobacco

Range of
wavelength (cm) Chemical substances

7270−1–6110−1 First overtone regions of N–H, C–H plus C–H

6110−1–5725−1 S–H, first overtone regions of C–H

5250−1–5050−1 O–H, second overtone of C=O

4870−1–4570−1 N–H, first overtone of C=O plus O–H

4570−1–4400−1 N–H plus O–H

4400−1–4010−1 C–H plus C–H

4010−1–3900−1 C–H
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subblock. Its final determination model is from the combination of
all subblock models. Boosting PLS [1] utilizes the optimized
training sets by a boosting method, and a PLS regression algorithm
is used to determine the nicotine content. In the multivariate
calibration method proposed by Tan et al. [29], the spectral data
in the training set are transformed into a set of wavelet representa-
tions by WT. Then, mutual information is captured to train and
construct an optimized PLS model for analyzing the total sugar
component of the tobacco. Sample set partitioning based on joint
X–Y distances-partial least squares (SPXY-PLS) regression method
[6] splits the tobacco samples into calibration and validation sets
based on joint X–Y distances. Then, PLS was used to establish the
regression model to determine the constituents of tobacco samples.
Li et al. [30] utilized both PLS and nonlinear least-squares SVM
methods to develop the calibration models to estimate the consti-
tuents of tobacco seed. Four preprocessing methods are used to
optimize the original spectra before establishing the calibration
models. This approach needs dedicated models for individual
constituents, which make this approach too complicated to be
applicable for wide usage.

The spectral data contain complex and redundant structural
information, which causes difficulties for data analysis. To reduce
the data complexity, several spectral treatments, such as WT [31],
principal component analysis, multiplicative scatter correction
[23], and standard normal variate [11], have been adopted as
the data preprocessing procedure. However, these preprocessing
methods require manual parameter adjustment, which is ad hoc and
causes low prediction accuracy due to information loss.

Recently, a CNN-based algorithm [18] is proposed to classify
the cultivation regions of tobacco leaves. In this method, one-
dimensional CNN (1D-CNN) is first used to extract the features of
the one-dimensional (1D) spectrum, and the image convolution
method is used to extract the structure features of the two-
dimensional spectral images. Then, both features are used for

classification and selecting the optimal network. Zhang et al.
[16] used CNN model to determine total anthocyanins, total
flavonoids, and total phenolics in black goji berries with NIR
hyperspectral. These studies have shown that deep learning can be
used as modeling methods and feature extraction methods for NIR
spectroscopy of tobacco leaves.

III. THE PROPOSED CLOUD-BASED
FRAMEWORK

Fig. 2 shows the proposed cloud-based tobacco cultivation area
classification framework, which consists of four main components,
tobacco growers, tobacco markets, cigarette factories, and the
tobacco supervision department. The neural network-based data
center is shared with each component. Each component uploads the
related tobacco information to the shared data center. The data
center uses neural network techniques to analyze the tobacco data.
The analyzed results are shared with each component. Tobacco
growers can provide basic information, such as cultivation-related
information, geographical information, and weather information.
Generally, tobacco growers, tobacco markets, and cigarette facto-
ries have their own standards for tobacco leaves. In most cases,
cigarette factories have more classification levels of tobacco leaves
than tobacco growers. The sale of tobacco leaves by tobacco
growers and tobacco markets is based on the quality levels of
tobacco leaves, the related unit price, and the weight. Cigarette
factories sell cigarettes in packs based on the quality levels of
tobacco leaves. Comparing with tobacco growers and tobacco
markets, cigarette factories classify the tobacco leaves into more
levels. Even the same cigarette brand has many types of cigarettes
that are sold at different prices. The related standards from each
component can help a neural network refine and improve the
classification. Tobacco growers can provide more cultivation

Fig. 2. Proposed cloud-based framework.
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information. The same type of tobacco leaves from different
cultivation regions is sold at tobacco markets. Tobacco markets
obtain more information related to the same type of tobacco leaves.
For the same type of tobacco leaves, the corresponding quality can
be compared and classified according to the cultivation regions.
Cigarette factories can use NIR spectroscopy techniques to achieve
the fast classification of tobacco leaves. The analyzed and learned
results from tobacco growers and tobacco markets can effectively
improve the classification accuracy of tobacco leaves.

IV. THE PROPOSED NETWORK
FRAMEWORK

In this paper, 1D-FCN model is proposed to determine the nicotine
content by analyzing the NIR data of tobacco leaves. Our tobacco
leaf dataset comes from the Guizhou Province, China. The col-
lected dataset includes NIR spectroscopy data and their measured
ground truth nicotine percentage, which is gathered using a tradi-
tional approach. The goal of this network is to build a model to

predict the nicotine percentage from NIR data of a tobacco sample.
It is a regression model that provides a precise value, given an
unseen sample. The 1D-FCN model uses 1D convolution layers to
directly process spectral data and output prediction results. MSE is
used as the regression loss function during the training process. The
overall flowchart of the network is shown in Fig. 3.

A. CNN

CNN is a deep neural network under deep supervised learning [32].
It can handle complex and redundant data, and high-order struc-
tural features [18]. In the network, through the forward propagation
of multiple convolution layers, both local and global features can
be accurately identified and extracted [13], [14]. During the
training process, the CNN model uses the gradient descent method
to adjust the weight parameters in the network through the back-
propagation to minimize the loss value [33]. The basic structure of
CNN consists of convolutional layers, pooling layers, and fully
connected layers. Each convolutional layer uses multiple kernels to
process the data and outputs feature maps. The usage of the

Fig. 3. Block diagram of the one-dimensional fully convolutional network (1D-FCN) framework.
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convolutional network is not limited to image processing; it can
be used to analyze 1D sequential data, such as NIR spectral
data. The calculation process of 1D convolution is shown in the
following:

gðiÞ =
�Xm

x=1

aðxÞ∗wi
x þ bi

�
, (1)

yðiÞ = f ðBNðgðiÞÞÞ, (2)

where x is the 1D input data; i is the filter in the i-th convolution
layer; a represents the feature map of input x to the i-th convolution
layer;wi

x represents the filter weight of this convolution layer and bi
is its bias; and g(i) is the output feature map after this convolutional
layer. In (2), BN represents the batch normalization (BN) [34], and
f(·) is the rectified linear unit (ReLU) [35] activation function,
which implements nonlinear transformations:

f ðiÞ = maxf0,yðiÞg, (3)

where negative values are zeroed out, and positive neurons are kept
and forwarded to the next layer.

B. THE 1D-FCN MODEL STRUCTURE

An FCN uses CNN as the backbone to transform individual
data into designated targets, including regression values. Unlike
the CNN described previously, FCN can backtrack the data of
the intermediate layer feature maps to the input data through the
transposed convolution layer, so that the predictions have a one-to-
one correspondence with the input data. In this work, our goal is to
predict a single value indicating the nicotine percentage from a
sequence of NIR spectral data. The entire data sequence should
contribute to the single output value. The FCN architecture per-
fectly fits the requirement of our task.

To better utilize the FCN network, we customize its architec-
ture with two modifications. First, the pooling layers are aban-
doned. In the original FCN architecture, to decrease the network
computational cost, max-pooling operations are applied after con-
volutional layers to reduce the parameters while making the model
translation invariant in the image-processing tasks. However,
the pooling operation causes information loss, which affects the
model’s performance. For our case, we just have a single prediction
output for each input sequence, and computational cost is not a
significant problem as compared to image processing tasks (e.g.,
segmentation). Meanwhile, data translation variance is not present
in this application as the entire wavelength sequence is contributed
to a single output. Therefore, the pooling layers are removed and

replaced with extra convolutional layers. This modification im-
proves the model accuracy as more feature information is taken into
the consideration during the training process. Second, all convolu-
tional kernels are in 1D shape, which fits the nature of the input data
and makes the model efficient.

The structure of this model is shown in the second diagram of
Fig. 4. The blue blocks represent the convolution layers, and the
gray blocks represent the full connection layers. The orange dots
are neurons inside the full connection layers.

This 1D-FCN model consists of five convolutional layers and
two full connection layers. Each convolutional layer uses a kernel
with a size of 2 × 1, stride of 2. The number of convolution kernels
from the first to fifth layers are 32, 64, 128, 256, and 512,
respectively. Each fully connected layer includes 512 neurons.
The original spectral data sequence is directly entered into the 1D-
FCN framework, and the network outputs the prediction (nicotine
percentage) and its corresponding loss, which is calculated byMSE
function (4) at the end of each forward iteration.

MSE =
P

n
t=1 ðyt − ŷtÞ2

n
, (4)

where yt is the true value of nicotine, ŷt is the predicted value, and
n is the number of yt.

V. EXPERIMENTAL RESULTS
A. DATASET AND EXPERIMENTAL PLATFORM

In this study, a total of 4000 standard samples of tobacco leaves are
used. These were collected from different regions in the Guizhou
Province, China, by Guizhou Tobacco Science Research Institute
of China. To get the ground truth (nicotine percentage) of those
tobacco samples, their chemical composition percentage values
were measured in a traditional way. Specifically, all tobacco
samples were dried in an oven at 60 °C under normal pressure
for half an hour. Then, they were ground into powder at a given
level of granularity through use of a whirlwind grinding instru-
ment. The tobacco leaf powder was sieved by mesh and put into a
continuous flow injection analytical instrument, San+ Automated
Wet Chemical Analyzer (Skalar, Holand). Then, a series of analyti-
cal methods were conducted to detect the chemical values of
nicotine. The measured values are used as the ground truth for
1D-FCN model training. The overall distribution of measured
nicotine percentage in total tobacco samples is shown in
Table II, where the values are normally distributed around the
mean value 2.80%. The range is between 0.36% and 6.01%.

Fig. 4. Structure of 1D-FCN model.
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Since the dataset size is limited, we used fivefold cross
validation to train the network model. All the labeled data (coupled
with ground truth) were randomly split into training and testing sets
with the ratio of 4∶1. The experiments were conducted on a small
cloud environment that consisted of six machines with NVIDIA
GTX 2080 GPU, Intel(R) Core(TM) i7-8700 3.20 GHz CPU, and
24 GB RAM. The neural network was built in the deep learning
framework TensorFlow 1.15.0 on aWindows 10 operating system.
The training and testing codes were programmed in Python using
Keras library.

B. EVALUATION METRICS

In this paper, the root MSE (RMSE), mean absolute error (MAE),
and determination coefficient R2 are used to evaluate the model
performance. Equations (5)–(7) show their equations, respectively.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n
t=1 ðyt − ŷtÞ2

n

r
, (5)

MAE =
P

n
t=1 jyt − ŷtj

n
, (6)

R2 = 1 −
P

n
t=1 ðyt − ŷtÞ2P
n
t=1 ðyt − �yÞ2 , (7)

where yt is the ground-truth value, ŷt is the predicted data, �y is the
mean of ground truth for all samples, and n is the number of testing
samples. RMSE and MAE reflected the precision of the measure-
ment, which indicates the overall difference between the predic-
tions and the ground truth for all testing samples. On the contrary,
R2 measures how successful the fit is in explaining the variation of
the data with values ranging from 0 to 1. When R2 is close to 1,
the model shows a good fitting. Concisely, a good model should
have a high R2 value and low RMSE and MAE values.

C. 1D-FCN MODEL PARAMETERS

The detailed parameter settings of the proposed 1D-FCN are shown
in Table III. Sequence data are processed in Conv layers.
The results of BN are restored to the original input characteristics
by scaling and shifting. ReLU is the activation function after
each Conv layer. Reshape layer adjusts data from 1 × 51 × 512
to 1 × 26,112. Dropout layer is used after each fully connected
layer to reduce the neurons to avoid overfitting.

The sequential NIR data have 609 spectral elements in a single
channel, and the final output is the nicotine percentage of a tobacco
leaf sample. It uses h ×w × c to denote the data shape, where w and
h represent the width and height, respectively, and c represents the
channel size. Since the input is 1D data, the size is 1 × 1609 × 1.
After being processed by 32 kernels in Conv1 with stride= 2, the
output size is 1 × 805 × 32. Conv2 has 64 convolution kernels with
stride= 2, and its output size is changed to 1 × 403 × 32. Similarly,
the outputs of Conv3–Conv5 are 1 × 202 × 128, 1 × 101 × 256,
and 1 × 51 × 512, respectively. There are no max-pooling layers.
The Reshape operation makes the data size equal to 1 × 26,112.
After the first fully connected (FC1) and ReLU layers, Dropout
layer is applied to avoid overfitting. In this work, the dropout rate is
0.5, which means 50% of neurons would stop working (being
zeros) in a batch of training. The output of FC1 and Dropout is 500.
The second fully connected layer, FC2, outputs the final predicted
nicotine percentage.

D. NETWORK TRAINING

During the network training, the batch size of the training data is set
to 16, and the total number of training iterations is set to 500,000.
The initial learning rate is set to 0.001, and its attenuation coeffi-
cient is set to 0.99 and updated every 6300 iterations. The initial
weights of the convolutional layers and the fully connected layers
are set using the Microsoft Research Asia (msra) method [36].

The training loss curves are shown in Fig. 5. The numbers on
Y-axis represent the loss values. The numbers on the X-axis repre-
sent the training iterations. The blue curve represents the trend of
loss valuewith themax-pooling layer. The red curve is the loss trend
for the proposed 1D-FCN. The red loss curve has a rapidly
downward trend at the beginning of the training and then slowly
decreases until convergence. From 50,000 to 400,000 iteration
rounds, the loss values have obvious fluctuations. After 400,000
iterations of network training, the loss value reaches 3.38409× 10−3

and starts to converge. The training loss value is eventually stable

TABLE II. Statistic Values of Raw Spectral Data

Min (%) Max (%) Mean (%) STD

Nicotine 0.36 6.01 2.80 0.82

STD= standard deviations.

TABLE III. Parameter Size and Data Shapes in the one-dimensional fully convolutional network (1D-FCN)

Layer Detailed structure

Convolution kernel

Output sizeSize Number Stride

First layer Conv1+BN+ReLU 1×2 32 2 1×805×32
Second layer Conv2+BN+ReLU 1×2 64 2 1×403×64
Third layer Conv3+BN+ReLU 1×2 128 2 1×202×128
Fourth layer Conv4+BN+ReLU 1×2 256 2 1×101×256
Fifth layer Conv5+BN+ReLU 1×2 512 2 1×51×512
Output layer Reshape 1×2 112 2 1×26,112

FC1+ReLU+Dropout – – – 500

FC2 – – – 1

BN= batch normalization; ReLU= rectified linear unit.
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and reaches the minimum value 3.92586 × 10−4 at 500,000 itera-
tions. The blue loss curve shows the training process for the model
with the max-pooling layer. Max-pooling causes information loss
and performed worse than the proposed model. It can be observed
from the chart, that its loss values do not have a smooth downward
trend even when it is getting close to the end of the training process.

On the training dataset, the RMSE value of our model was
0.05370, and the MAE value was 0.04058. On the testing set, the
RMSE and MAE values are 0.04899 and 0.03409, respectively.
These values are better than that on the training set. It indicates the
trained model is not overfitting. The correlation coefficient R2 on
both training and testing sets are greater than 0.99 and close to 1.

E. COMPARATIVE ANALYSIS WITH OTHER
METHODS

In analyzing and determining the nicotine percentage of tobacco
leaves, the proposed 1D-FCN model was compared with two
conventional machine-learning approaches, PLS regression meth-
ods [37], [38] and SVM [5], and a regular deep CNN model. We
implemented both PLS and SVM approaches according to the steps
described in their original papers. 1D-CNN was implemented as
described in Section IV.A. All experiments were conducted on the
same datasets and platform, and RMSE, MAE, and R2 were used
for evaluation.

Fig. 6 shows the correlations between the predicted values and
measured ground truth of the testing tobacco samples for four
models. For each scatter diagram, the numbers on the abscissa
and ordinate represent the ground truth and the predictions, respec-
tively. The orange, green, blue, and red dots on four diagrams are
from the SVM, PLS, 1D-CNN, and the proposed 1D-FCN models,
respectively. There is a black line y= x in each scatter diagram. If the
predicted values are exactly the same as measured ground-truth
values, all points would be perfectly situated on this diagonal line.

From the SVM model, many orange points are distributed
widely on both sides of the diagonal line. It indicates the predicted
values largely differ from the ground truth. Compared with SVM
model, PLS and 1D-CNNmodels are relatively better, but the green
points from PLS model are not tightly close to the diagonal lines,
especially for the nicotine percentage larger than 4%. Most of these
incorrectly predicted samples are under the diagonal line meaning
the predicted values are underestimated. For the 1D-CNN model,
blue dots are tightly narrowed around the diagonal line in the range
of nicotine percentage between 2% and 3.5%, which is near themass
center (mean) of the sample data according to Table II. Meanwhile,
blue dots are scattered unevenly over or under the diagonal line in
the regions of low (<1%) and high nicotine percentage (>4%), res-
pectively. Those samples with high or low nicotine volumes belong
to variances in the dataset as shown in Table II. It indicates that 1D-
CNN model works fine for the majority of cases but could not
provide accurate predictions for variant samples due to small
training dataset. However, the proposed 1D-FCN model can over-
come the limitation, as its predicted values are almost consistent
with the ground truth, tightly situated along the y= x diagonal line.
The closer these points are to the diagonal line the better-fitting
effect of the model. Obviously, 1D-FCN performs the best.

Fig. 7 presents four bar charts showing the evaluation metrics
RMSE, MAE, and R2 for the models on the testing dataset. In the
first two charts, the orange, green, blue, and red bars represent the
error rates for SVM, PLS, 1D-CNN, and 1D-FCN models, respec-
tively. Apparently, the error rates of SVM and PLS models are
much higher than those of 1D-CNN and 1D-FCN models, and 1D-
FCN performs the best. The ordinate in the R2 graph represents the
model’s fitting rate, which shows how well the model fits the
expected ground truth. The R2 value for 1D-FCN model is greater
than others, with a value close to 1.

Table IV shows the detailed analysis results of the four models
on the testing dataset. As mentioned previously, a good model
should have high R2 values and low RMSE and MAE values.
Clearly, 1D-FCN performed the best according to three evaluation
metrics. It demonstrates the proposed 1D-FCN has the powerful
prediction capability as it outperforms the other conventional

Fig. 5. Training of 1D-FCN.

Fig. 6. Correlation between predicted and the ground-truth values of different models.
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machine-learning methods and a regular CNN model for nicotine
analysis.

VI. CONCLUSIONS
In this paper, we proposed a 1D-FCN model to quantitatively
analyze the nicotine levels of tobacco samples from NIR spectros-
copy data in a cloud environment. The model is based on the FCN,
where the max-pooling layer is replaced by a convolutional layer to
avoid information loss. To be adaptive to the nature of sequential
NIR spectroscopy data, 1D convolution layers are used to directly
extract the structural features. During the model evaluation, RMSE,
MAE, and R2 are used as the metrics to verify the prediction
performance. Compared with the conventional machine-learning
approaches and a regular 1D-CNN model, the proposed network
demonstrates superior prediction performance. The overall results
show that NIR spectroscopy combined with a deep learning
framework can analyze chemical substances efficiently and effec-
tively. This research provides a deep learning foundation for
quantitative analysis of NIR spectral data in the tobacco industry.
In future, the features of other chemical components will be
explored to extend the applicability of the proposed model. The
proposed model will also be improved to enhance the analysis
accuracy of chemical components.
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