
AI-infused Semantic Model to Enrich and Expand
Programming Question Generation

I-Han Hsiao1 and Cheng-Yu Chung2

1Santa Clara University, Santa Clara, CA, USA
2Arizona State University, Tempe, AZ, USA

(Received 04 March 2022; Revised 21 March 2022; Accepted 21 March 2022; Published online 31 March 2022)

Abstract: Creating practice questions for programming learning is not easy. It requires the instructor to diligently organize
heterogeneous learning resources, that is, conceptual programming concepts and procedural programming rules. Today’s
programming question generation (PQG) is still largely relying on the demanding creation task performed by the instructors
without advanced technological support. In this work, we propose a semantic PQGmodel that aims to help the instructor generate
new programming questions and expand the assessment items. The PQG model is designed to transform conceptual and
procedural programming knowledge from textbooks into a semantic network by the Local Knowledge Graph (LKG) and
Abstract Syntax Tree (AST). For any given question, the model queries the established network to find related code examples and
generates a set of questions by the associated LKG/AST semantic structures. We conduct analysis to compare instructor-made
questions from 9 undergraduate introductory programming courses and textbook questions. The results show that the instructor-
made questions had much simpler complexity than the textbook ones. The disparity of topic distribution intrigued us to further
research the breadth and depth of question quality and also to investigate the complexity of the questions in relation to the student
performances. Finally, we report a user study results on the proposed Artificial Intelligent-infused semantic PQG model in
examining the machine-generated questions’ quality.

Key words: Assessment; Programming; Semantic Modeling; Automatic Question Generation

I. INTRODUCTION
Questions are one of the most widely used tools to assess students’
knowledge acquisition [12]. Well-engineered questions permit
students to assess the critical aspects of the subject, provide a
bridge between theory and practice from the question and the
answer, and offer useful problem-solving applications. Numerous
studies have demonstrated the effectiveness of questions utilization
via various educational technologies [3]. For instance, instructors
can periodically release questions (e.g., quizzes, exercises, worked
examples) on a self-assessment platform and help students regu-
larly and persistently practice the content [7,8]. With the rise of the
remote and distance learning, the role of questions is becoming
more imperative than ever. Although ranges of educational tech-
nologies have made progress in harnessing reusable educational
objects and depositories [2,4,5,6,14,16] or crowdsourcing-based
method of generating questions [10], the proposed Artificial Intel-
ligent (AI)-based approaches predominantly focus on language
translation methods; for example, [26], less is emphasized on AI-
based semantic approaches to automatically generate meaningful
and engaging questions. Therefore, our research group explores
AI-infused semantic modeling in assisting the human-intelligence-
demanding process [15].

In our targeted domain, programming language learning, it has
been pointed out that making a programming question is not as
simple as transforming declarative sentences into an interrogative
format. One main challenge is the alignment between knowing-that

(conceptual) and knowing-how (procedural) knowledge. The
instructor not only needs to consider students’ abilities but also
carefully designs questions to target desired skills by integrating
programming code and concepts. These aspects indicate that the
content of the questions usually transcends beyond the textual
representation, which raises questions like “what are appropriate
question structures or complexity? ” and “how are they related to
student performance?”We have previously examined the AI+HCI
approach to facilitate instructor in making exam questions [13]. In
this work, we focus on engineering a semantic programming
question generation (PQG) model to facilitate question creation.

We adopt a semantic network model, Local Knowledge Graph
(LKG) to represent a question in the format of semantic triples
(i.e., combinations of verb, subject, and object) and to construct a
semantic network around them. We hypothesize that programming
code and its intents can be synthesized by their descriptions in verb-
arguments formats, thereby building a network in an unsupervised
way by the Abstract Syntax Tree (AST) and the LKG model [21].
The PQG model can be used to make programming questions by
AST nodes and the associated semantic triplets (i.e., subject-verb-
object pairs). We believe the model can help instructors make
programming questions more efficient. Overall, the proposed work
is guided by the following research questions:

1. How do we augment conceptual and procedural knowledge in
computer programming in a PQG model?

2. To what extent the semantic PQG model affect the generated
question quality?

We conduct analysis to compare instructor-made questions from 9
undergraduate introductory programming courses and textbookCorresponding author: I-Han Hsiao (e-mail: ihsiao@scu.edu).

© The Author(s) 2022. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 47

Journal of Artificial Intelligence and Technology, 2022, 2, 47-54
https://doi.org/10.37965/jait.2022.0090 RESEARCH ARTICLE

https://creativecommons.org/licenses/by/4.0/


questions. The results show that the instructor-made questions had
much simpler complexity than the textbook ones. The disparity of
topic distribution intrigued us to further research the breadth and
depth of question quality and also to investigate the complexity of
the questions in relation to the student performances. Therefore, in
this paper, we report the methodology of the proposed AI-infused
semantic PQG model and a user study to uncover valuable insights
of the PQG extensibility.

II. RELATED WORK
A. AUTOMATIC QUESTION GENERATION AND
ANALYSIS

The two fundamental concepts of QG are “what to ask” and “how
to ask.” A QG process works like a processing pipeline where the
key information from the input (“what to ask”) is extracted and
transformed into question forms (“how to ask”). A recent review
of QG for educational purposes from Kurdi et al. [15] categorizes
QG methods into two aspects: understanding and transformation.

The level of understanding describes how a QGmethod extracts
key information in a given context. There are two common types of
extraction in the literature: syntax-based extraction and semantic-
based extraction. A syntax-based method uses syntactic features
from input, for example, part-of-speech tags, named entity recogni-
tion (NER), and parse-tree dependency. Such features represent
structural characteristics of the input and to some extent themeaning.
For example, Willis et al. [24] analyzed the Stanford Question
Answering Dataset (SQuAD) [19] that consisted of context-ques-
tion-answer pairs sourced fromWikipedia. They found the five most
frequent NER tags in the questions were MONEY, CARDINAL,
PERCENT, DATE, and PERSON. This result suggested that key
information (i.e., key phrases in text) was highly correlated with
phrases that have certain syntactic features.

The other kind of extraction is semantic-based and requires the
understanding of input beyond the syntactic features. One prevalent
design of semantic-based methods is using the knowledge base
(ontology) that provides a structured knowledge representation.
A knowledge base consists of key concepts and their dependency
upon each other. For example, Zhang & VanLehn [26] proposed a
QG method for introductory biology classes. They obtained an
existing knowledge base about biology and defined a set of
question schema for different semantic triples (i.e., data entities
in the format of subject-predicate-object expressions). Compared to
syntax-based methods, a semantic-based method may generate
questions that are more relevant to the target domain because noise
has been filtered out during the construction of knowledge bases.

B. PROGRAMMING QUESTION GENERATION FOR
EDUCATIONAL PURPOSES

QG for educational purposes has been explored in different fields
of study, including mathematics, physics, biology, and linguistics.
A recent survey in the literature has shown that automatic QG is
especially popular in the field of language learning [15]. The
learning content has a close relationship to the grammar, syntax,
and semantics of natural languages, which makes the field an
obvious subject of QG. In addition, the need for standardized
exams also engages more research to focus on the field [15]. In
addition to formal learning, much research on QG has also focused
on the development of general QA systems for training and
instructions, for example, [20].

Programming learning nowadays has been reshaped by the use
of educational technology that emphasizes personalized learning
[9]. For example, Lu & Hsiao [20] uses adaptive learning techni-
ques to personalize the search result for programming learners. For
another example, [1] focuses on bite-size practices that distribute
student practice over time to achieve the distributed learning effect.
These educational technologies are all based on the abundant
supply of high-quality materials that can not only fulfill the quantity
in need but also the quality of personalized learning which requires
a sufficient coverage of concepts.

However, despite the need for more questions and the popular-
ity of programming learning, little research has been focused on QG
for computer programming learning. An early work from [4] focuses
on individualized, parameterized exercises for the C programming
language. Similar to mathematical formulas, coding questions in
programming learning can be transformed into fixed templates with
part of them replaced by variables. The variables can then be
replaced by predefined cases (i.e., values in worked examples) to
generate a large number of new questions. Another research from
[27] focuses on the SQL programming language which has a
structure similar to natural languages. They propose a deep neural
network for translating the natural language content to correspond-
ing SQL queries for questions. Overall, we believe there is still a
need for further research in the QG for programming learning.

III. METHODOLOGY
A. MODELING CONCEPTUAL KNOWLEDGE BY
OPEN INFORMATION EXTRACTION AND LOCAL
KNOWLEDGE NETWORK

Semantic role labeling (SRL) is the process that identifies semantic
relationships between words or phrases in sentences. SRL is widely
used in natural language processing to build a model that can
interpret the syntactic structure of natural language. It also helps
index textual information by compact formats like the “(subject)-
verb-objects” relationship which is usually stored as triples, for
example, (a program/ARG; stored/VERB; objects/ARG) (Fig. 1).

The main task of automatic SRL systems is to group a
sequence of words into a set of predefined SRL labels. However,
labeling words by the rules of grammar may not be sufficient for the
machine to understand natural language. For example, a complex
sentence may have an overlapping structure and include more than
one proposition. The sentence can therefore be decomposed into
different possible SRL triples, each of which reveals different
aspects of the meaning. Extending the concept of SRL, researchers
have proposed Open Information Extraction (OIE) that considers
both SRL and propositions asserted by sentences [25]. For exam-
ple, the sentence “computers connected to the Internet can com-
municate with each other” can be decomposed into two possible
propositions: “(Computers connected to the Internet; can; com-
municate with each other)” and “(Computers; connected; to the
Internet).” These two propositions represent two aspects of the
meaning. Compared to conventional SRL, OIE can extract more
information about the intent of a given sentence.

Based on OIE, the LKG is a semantic network model that
connects subjects, verbs, and objects in OIE triples [11]. It has been
shown that the LKG can be used to store a large volume of
documents and provide an efficient structure for search queries.
We believe that the LKG can also help analyze the structure of
question content due to its network structure: the interconnection of
similar semantic objects and the span of edges may represent the

48 I-Han Hsiao and Cheng-Yu Chung

JAIT Vol. 2, No. 2, 2022



complexity of underlying knowledge, thereby forming a semantic
network. Once questions are represented as OIE triples in an LKG,
we can further analyze the complexity of questions in terms of
common statistics in the field of network analysis [22]. This
enables the opportunity to understand not only the difference
between instructor-made questions and textbook questions but
also the correlation between the complexity of questions and
student performance.

B. MODELING PROCEDURAL PROGRAMMING
KNOWLEDGE BY ABSTRACT SYNTAX TREE

A programming language is usually defined by a formal language
with well-structured grammar. This characteristic ensures that pro-
gram code can be efficiently parsed into binary machine code by a
compiler. The AST is an alternative representation of programs that
specifically focuses on the syntactic structure. For example, in
an AST of Java code, the node “ClassOrInterfaceDeclaration”
represents the entry point of a Java class definition, and the node
“VariableDeclarator” represents a statement that declares a new
variable and its initializer. Although the AST is not necessarily
related to the runtime nature of programs (i.e., the references to
external libraries or the actual flow of data), it provides a convenient
way to parse and represent programming semantics.

C. EXTRACTION OF SEMANTIC TRIPLES AND
CONSTRUCTION OF LKG

This study adopts a supervised OIE model developed by [21] to
automatically extract propositions from questions. The model is
based on an RNN architecture trained to iteratively extract
propositions from a given sequence of words. The output of
OIE is a set of triples that represent the propositions in a given
question. Each triple always consists of one verb (VERB) and the
associated arguments (ARG) with index numbers that suggest their
semantic roles. The labeling schema follows the PropBank corpus
[18] where ARG0 denotes the agent (subject) of the verb, ARG1
denotes the patient (direct object) of the verb, and ARG2 denotes

the instrument (or the entity given to ARG1). Higher orders of
arguments (e.g., ARG3, ARG4, etc.) and modifiers were omitted in
the analysis due to their rarity in the dataset. After triples were
extracted by the OIE model, we constructed an LKG in a similar
manner to the work from [11] where the researchers used subjects/
objects as nodes and verbs as edges. The only difference was that
instead of using verbs as edges, we made verbs also nodes of the
network and built edges by the subject-verb-object relationship.

D. DATA COLLECTION

We collected three datasets of questions, one of which represent
instructor-made questions and the other textbook questions. The
first dataset, QuizIT, was instructor-mademultiple-choice questions
(MCQ) collected from [1] that was used in 9 undergraduate courses
about entry-level Java programming over 3 years. The instructor
might make questions from scratch or select/modify the existing
questions in a question bank. Because an MCQ from QuizIT might
have the major content of questions in the options (e.g., “Which of
the following is correct?”), we chose to concatenate all question
texts with their answer options to ensure that sufficient details were
included in the dataset. The number of unique questions was 779
(355 when counting unique question text only). The second dataset
of practice questions, Textbook, was collected from a free online
textbook, “Introduction to Programming Using Java, Eighth Edi-
tion.”1We collected 7 chapters of content that overlappedwith the 9
undergraduate courses on Introduction to Programming. In total,
there were 163 practice questions, most of which were free-text
questions. The third dataset, QBank, was collected from a question
bank accompanied by the textbook used in the entry-level Java
programming course. After processing, we collected 225 practice
questions that were also in the format of MCQ. The student
performance was represented by the statistical first-attempt error
rate on QuizIT. This dataset consisted of records from 570 students
who contributed 14,534 first attempts. More details about this
performance data are described in the analysis below.

Fig. 1. Examples of LKG in our context.

1 https://math.hws.edu/javanotes/

AI-infused Semantic Model to Enrich and Expand Programming Question Generation 49

JAIT Vol. 2, No. 2, 2022



E. STUDY DESIGN

To evaluate the performance of the PQGmodel, we designed a user
study (Fig. 2) that aimed to collect feedback from instructors who
have experience in teaching introductory programming courses.
The user study consists of two parts: a survey of teaching experi-
ence and a task of question evaluation. A participant is expected to
spend around 1 hour to finish the whole study.

In the evaluation task, the participant is given 12 sets of input
questions and generated questions. The input questions were
selected from a pool of difficult questions according to their
statistical difficulty (i.e., the error rate) on a self-assessment
platform [1]. Considering the cost of the user study, especially
the recruitment of experienced instructors, we limited the number
of input sets to 12.

For each input question, s/he has to generate at least one new
programming question and evaluate the quality of the generated
questions according to (1) the relevance to the topic of the input
(Topic-Rel), (2) the extensibility in terms of topics (Ext-Topics),
(3) the extensibility in terms of complexity (Ext-Complex), and
(4) the extensibility in terms of the participant’s need of question
generation (Ext-Need). All of the evaluation questions are 5-item
Likert scales that ranged from −2 to +2.

As far as we know, there is no existing and publicly available
model or benchmark datasets of PQG. To compare the performance
of the model with a reference, we devised a reference model by
masking part of the proposed PQG model. The reference model,
called the “code-aware” model, uses only the AST structures to
generate programming questions. The reference model is compared
to the other model called the “context-aware”model which uses the
LKG structure to generate programming questions. To some
extent, the result of this comparison can indicate the performance
of the knowledge representation and whether the participants have
any preference for the model.

IV. EVALUATION
A. SEMANTIC PQG MODEL QUALITY

1) TEXTBOOK QUESTIONS HAVE A HIGHER DIVERSITY AND
COMPLEXITY THAN INSTRUCTOR-MADE QUESTIONS. All the

networks had many connected components on the circumference
that was separate from the major component in the center (as shown
in Fig. 1). In our construction of the LKGs, propositions using the
same verbs or arguments would reside in the same connected
component. A component that was separate from the others
suggested that the underlying propositions used a different set
of verbs/arguments. Following this interpretation, the number of
connected components became an indication of the diversity of
concepts because different concepts might be addressed by differ-
ent verbs/arguments, therefore resulting in different formats of
questions. The largest number of connected components was
QBank with 113 components. The Textbook had 74, and QuizIT
had 53. This result suggests that questions of QBank might have a
higher diversity of concepts than the others. In contrast to this,
QuizIT, even though it had the greatest number of questions,
resulted in the lowest diversity of concepts. This could be due
to the smaller vocabulary used by the instructors when they
addressed concepts or that the instructors tended to make questions
in similar and simple formats.

2) QUESTION COMPLEXITY IS A SIGNIFICANT PREDICTOR OF
STUDENT PERFORMANCE. We conducted a classification anal-
ysis to evaluate the classification performance of the combination
of unique connected components (CUCC) and other network
characteristics. The Random Forest classifier with 10-fold
cross-validation was used to benchmark different configurations
of features. The result showed that a model using one-hot vectors
of the CUCC alone was able to retrieve most high-error questions
(f1= 0.67, precision = 0.54, recall = 0.90, accuracy= 0.58); how-
ever, its precision was mediocre. After several iterations of
experiments, we found two network characteristics that helped
reach the best performance: the out-degree of verbs (ODV) and the
betweenness of argument (BTA). The classification reached f1 =
0.72, precision = 0.75, recall = 0.70, and accuracy= 0.73.
Although the recall was lower than the classification with the
CUCC only, these features seemed to find a reasonable balance.
This result suggests that the ODV and the BTA might be indirect
indicators of the CUCC. Hypothetically, a small component had
low ODV and high BTA; a large component had high ODV and
low BTA. Although the current state of analysis was not able to
examine this hypothesis, the result from the classification analysis

Fig. 2. User study procedure.

50 I-Han Hsiao and Cheng-Yu Chung

JAIT Vol. 2, No. 2, 2022



can help develop a measure to evaluate the complexity of
questions.

B. SEMANTIC PQG MODEL IMPACT

1) HIGH SIMILARITY BETWEEN THE INSTRUCTOR-GENERATED
QUESTIONS ANDMACHINE-GENERATEDQUESTIONS. To find
out the semantic similarity between the collected instructor-
generated questions and the corresponding machine-generated
questions, we trained a Word2Vec embedding out of public
programming textbooks. The embedding model was then used
to transform the input questions (IN), the instructor-generated
questions (USER), and machine-generated questions (CA for
code-aware; CT for context-aware) into vectors by which we
were able to compute the cosine similarity (SIM) between them
as shown in Fig. 3.

The result showed that the SIM(CA, USER) (M = 0.84, SD =
0.14) and the SIM(CT, USER) (M= 0.82, SD= 0.19) were similar
and significantly higher than the SIM(IN, USER) (M = 0.63, SD =
0.25) (t(166) = 6.72, p= 0.00; t(166) = 5.43, p= 0.00). The rela-
tively low SIM(IN, USER) to some extent suggests that the
instructor-generated questions addressed concepts that were more
extensive than the input questions, which is expected because
the instructors were asked to generate new questions that can
help their students to practice the concept from the input question.
The significantly high and similar SIM(CA, USER) and SIM(CT,
USER) suggest that the machine-generated questions addressed
concepts similar to the instructor-generated questions. Also, there
was no significant difference between the code-aware and the
context-aware models. These outcomes plausibly indicate that
the knowledge extraction of our PQG model was aligned with
the instructors’ opinions. In other words, the model was able to
generate questions that were similar to those generated by the
instructor.

2) SIGNIFICANTLY POSITIVE RATINGS ON THE UTILITY OF
MACHINE-GENERATED QUESTIONS. We summarized in
Fig. 4 and Table I the instructors’ subjective opinions on the
machine-generated questions over the topic relevance and the

extensibility in terms of topics, complexity, and instructional
needs. First, we found that both experiment models received a
significantly positive (with respect to zero) rating, especially on the
extensibility of complexity. There was no significant difference
found between the two models. This result suggests that the
experienced instructors were generally satisfied with the utility
of the machine-generated questions. They found the machine-
generated questions relevant to the input questions. The machine-
generated questions also provided sufficient details for them to
generate new questions that address similar topics and are complex
enough to distinguish high-performing and low-performing stu-
dents. Overall, our PQG model was able to supply sufficient
information for them to generate new questions for students.

Interestingly, the code-aware model did not perform worse
than the context-aware model, which rejects our hypothesis about
their performance (the code-aware model covers a narrower range
of knowledge than the context-aware model, therefore being an
inferior option). Plausibly, this result suggests that our PQG model
was helpful for the instructors to generate new questions no matter
if it was only code-aware or only context-aware, even though the
effect of the full model remains unclear and requires further
analysis. Due to the similar performance of the twomaskedmodels,

Fig. 3. Embedding similarity between the input (IN), machine-generated
(CA= code-aware, CT= context-aware), and instructor-generated
(USER) Questions.

Fig. 4. The distribution of ratings to the four utility variables: topic
relevance (Topic-Rel), extensibility of topics (Ext-Topics), complexity
(Ext-Complex), and the instructor’s need (Ext-Need). The instructors
consistently gave significantly positive ratings to all the variables.

Table I. The statistics of one-sample T-tests for the four rating
variables (Reported in the Format “M, SD, test (DoF)=V (P VAL)”

Code-aware Context-aware

Topic-Rel 0.64, 1.34,
t(83)= 4.39 (0.00)

0.64, 1.34,
t(83)= 3.59 (0.00)

Ext-Topics 0.80, 1.27,
t(83)= 5.76 (0.00)

0.80, 1.27,
t(83)= 3.37 (0.00)

Ext-Complex 1.26, 0.81,
t(83)= 14.31 (0.00)

1.26, 0.81,
t(83)= 12.67 (0.00)

Ext-Needs 0.57, 1.24,
t(83)= 4.21 (0.00)

0.57, 1.24,
t(83)= 3.62 (0.00)

AI-infused Semantic Model to Enrich and Expand Programming Question Generation 51

JAIT Vol. 2, No. 2, 2022



the following analyses report the ratings with the two combined for
readability.

3) THE PQG MODEL HELPS GENERATE GENERAL CODE-
WRITING QUESTIONS AND COMPLEX CODE-TRACING
QUESTIONS. It is likely that instructors need different kinds of
support when generating new programming questions. To find
out whether our PQG model can address certain needs of the
instructors, we conducted a multilevel analysis by factoring in the
preferred question types as shown in Fig. 5 and Table II. The
analysis showed that the instructors who valued code-writing
questions were the major source of positive ratings in the evalua-
tion. They unanimously expressed significantly positive ratings on
all four variables. However, the instructors who valued code-
tracing questions the most had mixed ratings: Only the extensibility
of complexity received a significantly positive rating from
this group.

This result is interesting as it points out that our PQG model
may only address the needs of a certain population. For code-
writing questions, the PQG model was able to provide topic-
relevant and highly extensible questions for the instructors to
use after edits in practice. However, for code-tracing questions,
the model was limited and only able to provide questions that were

complex enough but not topic-relevant nor extensible in terms of
topics and instructional needs. One plausible explanation is that the
instructors might expect code-tracing questions to be more aligned
with the content they use in class, for example, small code snippets
or worked examples in the instructions. Nevertheless, the design of
our PQG model is based on the content of public textbooks that
may not include such an example. Considering the target audience
of the instructors is students from introductory programming
courses, it is likely that our PQG model generated questions
that were too complex for the students to learn, which is partially
confirmed by the high rating for the variable Ext-Complex.

V. CONCLUSIONS
A. SUMMARY

A PQG model that aims to support instructors to make new
programming questions from the existing ones. Following the
knowledge-based QG approach, we used the LKG to represent
the conceptual programming knowledge and the AST to represent
procedural programming knowledge. We conducted a user study
with experienced instructors from introductory programming
courses. The results showed that the participants had significantly
positive feedback toward the extensibility of question complexity.
Overall, this work contributes to the understanding of instructors’
question generation process by an explainable data model and
paves a road to the future development of AI-assisted PQG tools for
educational purposes.

B. LIMITATIONS & FUTURE WORK

There are several limitations of this study. First of all, the evalua-
tion task covered a relatively small scope and a limited number of
topics in programming learning. Programming topics may range
from basic syntax to advanced knowledge. The evaluation included
also a small set of machine-generated questions. Further research is
still required to validate the model’s capability in different topics.
Second, the influence on the rating from part of the machine-
generated content remains unclear. The current PQG model gen-
erates both code examples and questions about the examples.

Fig. 5. Multilevel analysis of ratings and preferred question types. The instructors who prefer code-writing questions gave consistently positive ratings to
all variables; however, those who prefer code-tracing questions gave mixed ratings except for the extensibility of complexity.

Table II. The one-sample statistics of the multilevel analysis
(Preferred question types and ratings)

Preferred
Question
Type Variable Statistics

Code-tracing Topic-Rel −0.56, 1.57, t(47)=−2.46, 0.02
Ext-Topics −0.50, 1.49, t(47)=−2.31, 0.03
Ext-Complex 1.10, 1.07, t(47)= 7.11, 0.00

Ext-Needs −0.27, 1.54, t(47)=−1.21, 0.23
Code-writing Topic-Rel 1.05, 0.90, t(119)= 12.69, 0.00

Ext-Topics 1.12, 0.92, t(119)= 13.19, 0.00

Ext-Complex 1.27, 0.70, t(119)= 19.63, 0.00

Ext-Needs 0.85, 0.91, t(119)= 10.19, 0.00

52 I-Han Hsiao and Cheng-Yu Chung

JAIT Vol. 2, No. 2, 2022



However, the evaluation task did not ask the instructor to evaluate
them individually or separately. The instructors might give more
weight to either the examples or the questions in their ratings.
Third, the sample size in this study was relatively small due to the
high cost of recruiting experienced instructors. Although the
feedback from such a population is valuable, it still requires a
larger sample to generalize the findings of this study.

Finally, due to the lack of widely available datasets for the
performance analysis of PQG models, this study used two masked
models and compared their performance to each other and a set of
instructor-generated questions. This made the analysis relatively
subjective with respect to the recruited instructors’ preferences.
Future studies should consider using the result of this study as one
baseline reference or developing a more rigorous design for PQG
performance analysis.

REFERENCES

[1] M. Alzaid and S. Hsiao, “Utilising problem-solving: from self-
assessment to self regulating,” New Rev. Hypermedia Multimed.,
vol. 25, no. 3, pp. 222–244, 2019.

[2] M. Baker, X. Hu, G. De Luca, and Y. Chen, “Intelligent voice
instructor-assistant system for collaborative and interactive classes,”
J. Artif. Intell. Technol., vol. 1, no. 2, pp. 121–130, 2021. DOI: 10.
37965/jait.2021.0003.

[3] R. S. J. d. Baker, A. T. Corbett, and V. Aleven, “More accurate
student modeling through contextual estimation of slip and guess
probabilities in Bayesian knowledge tracing,” in Intelligent
Tutoring Systems, vol. 5091 LNCS. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 406–415. DOI: 10.1007/978-3-540-
69132-744. Available: http://link.springer.com/10.1007/978-3-540-
69132-744.

[4] P. Brusilovsky and S. Sosnovsky, “Invidualized exercises for self-
assessment of programming knowledge: an evaluation of Quiz-
PACK,” J. Educ. Resour. Comput., vol. 5, no. 3, p. 6, 2005. DOI:
10.1145/1163405.1163411.

[5] P. Brusilovsky, M. Yudelson, and I. H. Hsiao, “Problem solving
examples as first class objects in educational digital libraries: three
obstacles to overcome,” J. Educ. Multimed. Hypermed., vol. 18, no. 3,
267–288, 2009.

[6] R. Cafolla, “Project MERLOT: bringing peer review to web-based
educational resources,” J. Technol. Teacher Educ., vol. 14, no. 2,
pp. 313–323, 2006.

[7] C. Y. Chung, and I. H. Hsiao, “Investigating patterns of study
persistence on self-assessment platform of programming problem-
solving,” in Proc. 51st ACM Technical Symposium on Computer
Science Education, Feb. 2020, pp. 162–168.

[8] C. Y. Chung and I. H. Hsiao, “From detail to context: modeling
distributed practice intensity and timing by multi-resolution signal
analysis,” Int. Educ. Data Mining Soc., 2021.

[9] B. C. Czerkawski and E. W. Lyman, “Exploring issues about
computational thinking in higher education,” TechTrends, vol. 59,
no. 2, pp. 57–65, 2015. DOI: 10.1007/s11528-015-0840-3.

[10] P. Denny, A. Luxton-Reilly, and J. Hamer, “The PeerWise system
of student contributed assessment questions,” in Proc. Tenth Confer-
ence on Australasian Computing Education-Volume 78, Jan. 2008,
pp. 69–74.

[11] A. Fan, C. Gardent, C. Braud, and A. Bordes, “Using local knowledge
graph construction to scale Seq2seq models to multi-document
inputs,” in EMNLP-IJCNLP 2019-2019 Conference on Empirical
Methods in Natural Language Processing and 9th International Joint

Conference on Natural Language Processing, Proceedings of the
Conference, 2019, pp. 4186–4196. DOI: 10.18653/v1/d19-1428.

[12] Y. Ham and B. Myers, “Supporting guided inquiry with cooperative
learning in computer organization,” in Proc. 50th ACM Technical
Symposium on Computer Science Education, Feb. 2019, pp. 273–
279.

[13] I. H. Hsiao, P. Brusilovsky, and S. Sosnovsky, “Web-based parame-
terized questions for object-oriented programming,” in E-Learn:
World Conference on E-Learning in Corporate, Government,
Healthcare, and Higher Education, Association for the Advancement
of Computing in Education (AACE), Nov. 2008, pp. 3728–3735.

[14] K. R. Koedinger, R. S. Baker, K. Cunningham, A. Skogsholm, B.
Leber, and J. Stamper, “A data repository for the EDM community:
the PSLCDataShop,”Handb. Educ. Data Mining, vol. 43, pp. 43–56,
2010.

[15] G. Kurdi, J. Leo, B. Parsia, U. Sattler, and S. Al-Emari, “A systematic
review of automatic question generation for educational purposes,”
Int. J. Artif. Intell. Educ., vol. 30, no. 1, pp. 121–204, 2020. DOI: 10.
1007/s40593-019-00186-y.

[16] M. Lovett, O. Meyer, and C. Thille, “The open learning initiative:
measuring the effectiveness of the OLI statistics course in accelerat-
ing student learning,” J. Interact. Media Educ., 2008.

[17] Y. Lu and I.-H. Hsiao, “Personalized information seeking assistant
(PiSA): from programming information seeking to learning,” Inf.
Retr. J., vol. 20, no. 5, pp. 433–455, 2017. DOI: 10.1007/s10791-
017-9305-y.

[18] M. Palmer, D. Gildea, and P. Kingsbury, “The proposition bank: an
annotated corpus of semantic roles,”Comput. Linguist., vol. 31, no. 1,
pp. 71–106, 2005. DOI: 10.1162/0891201053630264

[19] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
unanswerable questions for SQuAD,” arXiv, 2018. Available: http://
arxiv.org/abs/1806.03822.

[20] S. Ruan, L. Jiang, J. Xu, B. J.-K. Tham, Z. Qiu, Y. Zhu, E. L.
Murnane, E. Brunskill, and J. A. Landay, “QuizBot: a dialogue-based
adaptive learning system for factual knowledge,” in Proc. 2019 CHI
Conference on Human Factors in Computing Systems, Chi, 2019,
pp. 1–13. DOI: 10.1145/3290605.3300587.

[21] G. Stanovsky, J. Michael, L. Zettlemoyer, and I. Dagan, “Supervised
open information extraction,” in NAACL HLT 2018–2018 Confer-
ence of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies – Proceedings of
the Conference 1(Section 4), 2018, pp. 885–895. DOI: 10.18653/v1/
n18-1081.

[22] A. Veremyev, A. Semenov, E.L. Pasiliao, and V. Boginski, “Graph-
based exploration and clustering analysis of semantic spaces,” Appl.
Netw. Sci., vol. 4, no. 1, p. 104, 2019. DOI: 10.1007/s41109-019-
0228-y. Available: https://appliednetsci.springeropen.com/articles/
10.1007/s41109-019-0228-y.

[23] T. Wang, X. Yuan, and A. Trischler, “A joint model for question
answering and question generation,” arXiv preprint arXiv:
1706.01450, 2017.

[24] A. Willis, G. Davis, S. Ruan, L. Manoharan, J. Landay, and E.
Brunskill, “Key phrase extraction for generating educational ques-
tion-answer Pairs,” inProc. Sixth (2019) ACMConference on Learning
@ Scale, New York, NY, USA, ACM, Jun. 2019, pp. 1–10. DOI: 10.
1145/3330430.3333636. Available: https://dl.acm.org/doi/10.1145/
3330430.3333636.

[25] A. Yates, M. Cafarella, M. Banko, O. Etzioni, M. Broadhead, and S.
Soderland, “TextRunner,” in Proc. Human Language Technologies:
The Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations on
XX – NAACL ’07, Morristown, NJ, USA, Association for

AI-infused Semantic Model to Enrich and Expand Programming Question Generation 53

JAIT Vol. 2, No. 2, 2022



Computational Linguistics, 2007, pp. 25–26. DOI: 10.3115/1614164.
1614177. Available: http://portal.acm.org/citation.cfm?doid=1614164.
1614177.

[26] L. Zhang and K. VanLehn, “How do machine-generated questions
compare to human-generated questions?,” Res. Pract. Technol.

Enhanc. Learn., vol. 11, no. 1, 2016. DOI: 10.1186/s41039-016-
0031-7.

[27] V. Zhong, C. Xiong, and R. Socher, “Seq2SQL: generating structured
queries from natural language using reinforcement learning,” ArXiv,
pp. 1–12, 2017. http://arxiv.org/abs/1709.00103.

54 I-Han Hsiao and Cheng-Yu Chung

JAIT Vol. 2, No. 2, 2022


