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Abstract: My Eye Al is a hybrid cloud-mobile assistive system that delivers real-time object detection and scene description for
visually impaired users. The system integrates three Al components: YOLOv11 for object detection, OWL-ViT for zero-shot
open-vocabulary recognition, and Bootstrapping Language-Image Pretraining for natural-language scene captioning. Two
YOLOv11 variants were trained on custom-curated datasets: the Medium model achieved mAP@0.5 = 0.443 and recall =0.457,
while the X-Large model improved to mAP@0.5 =0.578 and recall = 0.603—reducing false negatives by 14.6 %. OWL-ViT
extended detection to unseen objects with 71.4 % zero-shot accuracy. The cloud-based architecture offloads computation from
the smartphone, maintaining low latency while supporting Android and iOS without special hardware. My Eye Al demonstrates
measurable improvements in detection accuracy, adaptability, and real-time usability, directly benefiting visually impaired

individuals through affordable, accessible mobile deployment.
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I. INTRODUCTION

Visually impaired individuals face critical challenges in perceiving
and interacting with their environment, creating an urgent need for
real-time, accurate assistive technologies that support daily inde-
pendence and safety. Traditional assistive technologies, such as
text-based screen readers and tactile indicators, have limitations in
providing real-time spatial awareness. The latest developments in
artificial intelligence, machine learning, big data processing, Inter-
net of Things, mobile computing, as well as their integration in
terms of services, have empowered many research domains from
theoretical exploration into practical applications[1,2]. My Eye Al
addresses these challenges by employing vision image processing
and natural language processing to deliver a seamless detection and
scene description experience. Several applications have been de-
ployed to aid visually impaired individuals using modern technol-
ogy. However, the existing solutions exhibit certain limitations.
For example, Google Lookout offers object detection, text reading,
scene exploration, and currency identification, but it is limited to
Android users [3]. Microsoft’s Seeing Al supports text recognition,
facial recognition, and barcode scanning, but lacks real-time
scene description, a crucial feature for navigation [4]. Meanwhile,
Envision Al integrates object recognition, text reading, and
navigation assistance, but requires expensive, specialized smart
glasses priced at ($1900+), creating a financial barrier for many
users [5].

My Eye Al addresses these gaps by offering a cost-effective,
cross-platform (Android and iOS) solution that integrates real-time
scene description and object detection via voice commands without
additional hardware, and it uses the user’s personal phone only. By
utilizing Bootstrapping Language-Image Pretraining (BLIP) for the
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scene Description [6], custom-trained YOLOvI1 [7,8] X-Large
variant, and OWL-ViT [9] for object detection, My Eye Al ensures
high accuracy in recognizing objects commonly used in our daily
lives. Furthermore, the model is hosted in the cloud, enabling
compatibility even with older smartphones.

My Eye Al is designed to be cost-effective, cross-platform, and
hardware-agnostic by offloading heavy inference to a cloud Applica-
tion Programming Interface (API) while keeping the client
lightweight. This enables consistent capability on both Android
and i0S without specialized wearables, preserving updatability and
scalability.

This paper builds on a conference paper published in ISADS
2025 [10], which presented the initial design, implementation, and
analysis of My Eye Al This journal version extends the prior work by
introducing a hybrid cloud-mobile implementation, conducting
extensive experiments, and providing a detailed performance analy-
sis, significantly enhancing both practical deployability and scientific
rigor compared to the original prototype. The system is designed to
assist visually impaired users through object detection, open-vocab-
ulary recognition, and natural-language scene description.

Formally, the system maps an input image III to detected
objects O, open-vocabulary labels L, and natural-language scene
descriptions S:

f:1-{0,LS}, O=h(YOLOv11(I)), L =k(OWL-VIiT(I)),

S = g(BLIP(O,L))
where YOLOvV11 performs object detection, OWL-ViT provides
zero-shot label recognition, and BLIP generates contextual scene

descriptions.
The sequential processing can also be expressed as

S = g(BLIP(O.L)) with O = h(YOLOv11(I)),
L = k(OWL-ViT(I))

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1


mailto:swahwah@asu.edu
mailto:yinong.chen@asu.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.37965/jait.2025.0908

2 Salma Wahwah and Yinong Chen

This model clarifies how the system converts visual input into
meaningful semantic  descriptions for real-time scene
understanding.

This journal version enhances the original prototype by re-
training YOLOv11 (X-Large) on a rebalanced dataset, integrating
OWL-VIiT for zero-shot detection, and incorporating BLIP for
contextual scene understanding. The enhanced system addresses
prior challenges of dataset imbalance, overfitting, and limited
vocabulary coverage, achieving measurable improvements:
mAP@0Q.5 increased from 0.443 to 0.578, recall from 0.457 to
0.603, while latency remained under 1.3 s. These results demon-
strate a deployable, efficient, and accurate assistive system, pro-
viding practical daily support for visually impaired users and
advancing machine vision using state-of-the-art algorithms.

The rest of the paper is structured as follows. Section II
presents related work. Section III introduces the system architec-
ture and the methodology applied in this study. Section IV analyzes
the experiment results. Section V further discusses the impacts and
innovations. Section VI concludes the paper.

Il. RELATED WORK

Assistive technologies for the visually impaired have seen rapid
development, especially with the integration of artificial intelli-
gence for object detection, navigation assistance, and environmen-
tal awareness. Despite these advances, many existing systems
continue to face challenges related to adaptability, affordability,
real-time responsiveness, and limited vocabulary flexibility.

Commercial applications such as Google Lookout [3] and
Microsoft’s Seeing Al [4] provide valuable features such as object
detection, OCR, and barcode recognition. However, Lookout
remains restricted to Android devices, while Seeing AI lacks
real-time scene understanding. Envision Al [5] offers broader
functionality but requires expensive smart glasses, limiting acces-
sibility for many users.

In academic research, Kumar et al. [12] implemented a
YOLOv3-based mobile solution for object recognition with voice
feedback, constrained by a fixed COCO dataset vocabulary. Du
et al. [13] developed an intelligent wheelchair for blind spot
obstacle detection using inexpensive cameras. The study used
an improved YOLOVS lightweight obstacle detection model
and constructed an obstacle dataset consisting of incomplete target
images captured in the smart wheelchair’s blind spot view. This
approach requires the use of an additional camera and computing
device installed on the wheelchair.

Shimakawa et al. [18] and Ranganayaki er al. [19] explored
smartphone-based obstacle detection systems that combine object
recognition with audio feedback. While Shimakawa’s system
estimated distances using device orientation, Ranganayaki’s
approach employed YOLOv8 and text-to-speech (TTS) to assist
with obstacle avoidance. However, both systems remain limited to
fixed vocabularies and do not support open-vocabulary recognition
or natural language interaction.

Environment-focused approaches have also emerged. Chen
et al. [14,15] proposed robotic platforms with mobile cameras to
assist visually impaired individuals in navigating dynamic sur-
roundings. Mashhadi et al. [16] introduced GeoNotify, which uses
federated learning and crowd-sourced images to detect temporary
obstacles. These methods promote community-driven safety but
lack on-device inference and support for spontaneous user queries.

Wearable aids continue to be explored, though they often rely
on basic sensors. Hersh [17] found that many such tools provide

binary feedback using ultrasound or infrared, offering minimal
semantic understanding. Ahmetovic [20] addressed macro and
micro navigation using traditional machine learning and sensor
fusion but faced scalability issues due to its reliance on manually
crafted features.

Tharuka et al. introduced PathFinder [21], which is a Con-
volutional Neural Network (CNN)-based mobile app with inte-
grated GPS and audio guidance that supports indoor and outdoor
navigation. However, it is optimized for high-end devices and lacks
support for multimodal interaction or dynamic vocabulary updates.

To overcome these limitations, our previous work presented at
ISADS 2025 [10] introduced My Eye Al, a mobile-cloud hybrid
system designed to deliver real-time object detection and scene
description through a user’s personal smartphone. In this extended
journal version, we expand upon that foundation by integrating
OWL-VIT for open-vocabulary detection, refining the training
dataset, enhancing performance evaluation, and introducing new
deployment optimizations. By addressing the key shortcomings of
prior systems, *My Eye AI* advances the field with a scalable,
cost-effective, and adaptive solution for real-world assistive use.

lll. SYSTEM ARCHITECTURE AND
METHODOLOGY

A. SYSTEM DESIGN AND WORKFLOW

My Eye Al is implemented as a hybrid mobile-cloud artificial
intelligence system, structured to optimize responsiveness, cross-
platform accessibility, and model scalability. Fig. 1 shows the
layered architecture of My Eye Al

The mobile app captures voice and camera input, and the
cloud API routes input to the detection and description modules.
YOLOV11 module detects the known objects, while the OWL-ViT
module handles open-vocabulary queries. The BLIP module gen-
erates natural language scene captions, and the output module
combines data and returned them to user in real time.

To promote maintainability and clear modularization, the
application architecture follows a layered pattern composed of
four key tiers [22] the presentation interface, business logic, state
management, and cloud-based service backend.
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Fig. 1. Layered mobile—cloud architecture of My Eye Al
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At the forefront is the user interface, which is responsible for
capturing input and delivering feedback in a seamless, accessible
manner. This layer leverages the smartphone’s camera to acquire
visual data, supports voice interaction through integrated speech
recognition, and audibly communicates results via a TTS engine.
This hands-free interaction design is tailored to the needs of
visually impaired users, enabling fluid access to system capabilities
without the need for visual confirmation or manual control.

Underlying the UI is the application logic layer, which co-
ordinates system behavior. It mediates interactions between the
user and backend services, manages asynchronous requests, and
encodes inputs for API transmission. The logic engine also inter-
prets server responses, guiding decision-making around model
invocation and fallback mechanisms.

A state management framework designed for real-time data
flow and interface synchronization supports the logic layer. This
layer implemented using reactive patterns (e.g., Riverpod [23]),
ensures that API-derived results are propagated throughout the
interface with minimal latency. It also maintains consistency
between user actions, visual capture, and model predictions.

At the backend, the system relies on a cloud-hosted service
layer where the core AI models are deployed. This includes
YOLOvVI11 for object detection, OWL-ViT for open-vocabulary
recognition, and BLIP for descriptive scene summarization.
Together, these models provide complementary functionality—
YOLOvV11 offers high-speed recognition of trained categories,
BLIP synthesizes image descriptions in natural language, and
OWL-VIiT enables zero-shot recognition of user-defined objects
via textual queries.

The system’s mobile-cloud deployment strategy plays a criti-
cal role in reducing on-device computational demands. Inference is
executed in the cloud, ensuring support even for mid-range smart-
phones with limited processing power. Meanwhile, the mobile
client maintains a lightweight footprint, managing only interaction,
request routing, and result delivery. This design not only enhances
real-time usability but also simplifies model updates and scalability
across different devices.

My Eye AI achieves an efficient architectural balance by
decoupling the user interface from compute-heavy inference tasks.
This enables accessibility, adaptability, and high-performance
assistive capabilities within a practical, mobile-first deploy-
ment model.

1). USER INTERACTION AND WORKFLOW. When a visually
impaired user issues a voice query (e.g., “What is in front of me?”),
the interaction proceeds through six sequential stages:

1. Wake and Capture—The user activates the app by voice; a
short sound confirms readiness. The camera captures
one frame.

2. Preprocessing—The client normalizes the image and sends
{image, query_text} to the cloud router APIL.

3. Routing—If the query matches a known class, YOLOv11
runs; otherwise, OWL-ViT handles the request.

4. Inference—YOLOv11 returns bounding boxes and confi-
dence scores; OWL-VIT returns text-match scores; BLIP
optionally generates a scene caption.

5. Fusion—The system merges detections using Soft Non-Max-
imum Suppression (NMS), preferring YOLO for known clas-
ses and OWL-VIiT for novel terms.

6. Response—Results are converted to natural speech and dis-
played as large-text feedback on the phone screen.
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This workflow clarifies how user intent is translated into real-
time visual feedback through an accessible, hands-free process
optimized for the visually impaired.

B. YOLOv11: OBJECT DETECTION FOR
ASSISTIVE Al

To enable robust and responsive object detection within the My
Eye Al system, we evaluated two variants of the YOLOv11 model
architecture: Medium and X-Large. Both models were trained on
custom datasets and assessed across multiple accuracy and gener-
alization metrics. The Medium variant served as a baseline for
performance, while the X-Large configuration was introduced to
address limitations observed in recall, precision, and overfitting.
The following subsections detail both models’ training procedures,
configurations, and results.

1). FIRST RUN: YOLOv11 MEDIUM VARIANT. This experiment
established a quantitative baseline and revealed limitations caused
by class imbalance and overfitting, guiding later methodological
refinement.

To establish a baseline for object detection performance, the
YOLOv11l Medium variant was trained on a curated dataset
derived from Google Open Images [23], comprising 83,089 anno-
tated images spanning 397 object categories. Each class was
capped at 250 images to maintain diversity while limiting domi-
nance by overrepresented categories. All annotations were refor-
matted to match the YOLOvI11 label structure.

The model was trained over 300 epochs using stochastic
gradient descent (SGD) with an auto-adjusted learning rate schedule
incorporating warmup stabilization. The input image size was fixed
at 640 pixels, and the batch size was limited to 2 due to hardware
constraints. The training took approximately 16.82 days due to
hardware limitations. Training was conducted on a CUDA-enabled
GPU using pretrained weights and resumed from the last checkpoint.
The training setup also included early stopping with a patience of 100
epochs, warmup over the first three epochs, and automatic mixed
precision enabled for efficiency. The optimizer parameters were
configured with a base learning rate of 0.01, momentum of 0.937,
and weight decay of 0.0005. Data augmentation techniques included
Hue, Saturation, Value color-space perturbation, geometric transfor-
mations, RandAugment, and random erasing with a probability of
0.4. The loss function combined bounding box regression (box =
7.5), classification loss (cls = 0.5), and distribution focal loss (DFL =
1.5), balanced to support stable learning across object categories.

During training, loss metrics decreased steadily: box loss [24]
declined from 1.2 to 0.8246, classification loss dropped from 3.0 to
1.032, and DFL fell from 1.46 to 1.1674.

As shown in the training and validation loss curves (Fig. 2-5),
both the box loss (Fig. 2) and classification loss (Fig. 3) during
training exhibit a steady downward trend, indicating effective
learning. However, the validation box loss (Fig. 4) and validation
classification loss (Fig. 5) begin to increase after epoch 263,
signaling the onset of overfitting. This divergence suggests that
the model starts to memorize the training data rather than general-
izing well to unseen samples.

The final model performance was modest. The mean average
precision [24] at intersection over union (IoU) threshold 0.5
(mAP50) was 0.443.

While mAP50-95 scored 0.329.

Precision reached 0.489 (see Fig. 8) and recall 0.457, leading
to an F1 score of 0.43 at epoch 263.
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Fig. 2. User interaction and workflow of My Eye Al
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Fig. 3. The box-loss metric during training of the YOLOv11-m variant.
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Fig. 5. During validation of the YOLOv11-m variant, the box-loss metric
indicates overfitting after epoch 263.
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Fig. 4. The classification-loss metric during training YOLOv11-m.

The recall results are shown in Fig. 9, while the F1-confidence
curve (Fig. 10) highlights the optimal confidence threshold where
the trade-off between precision and recall is maximized. As
illustrated in the precision—confidence curve (Fig. 11), precision
steadily improves with higher confidence thresholds, reaching 1.0
at the cost of recall. The recall-confidence curve (Fig. 13) shows
the opposite effect: high recall at low thresholds, but a steep decline
as the threshold rises. At a confidence of 0.215, the model achieves
its highest F1 score of 0.43, making it the ideal operational point for
minimizing misclassification risk while maintaining reliable
detections.

Fig. 6. The classification-loss metric during validation of the YOLOv11-
m variant.
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Fig. 7. mAP@0.5 results for the YOLOv11-m variant.

As illustrated in the precision—confidence curve (Fig. 11),
model precision improves steadily as the confidence threshold
increases. While precision reaches 1.0 at high thresholds, this
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Fig. 8. mAP@0.5-0.95 results for the YOLOvI1-m variant.
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Fig. 9. Precision metrics for the YOLOv11-m variant.
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Fig. 10. Recall metrics for the YOLOv11-m variant.

comes at the cost of recall, suggesting fewer detections are made.
This supports the need to balance threshold selection carefully
depending on the application’s tolerance for false negatives.

The precision—recall (PR) curve shown in Fig. 12 evaluates the
performance of the YOLOv11-m model across varying confidence
thresholds. The blue curve aggregates detection performance
across all object classes.

The model achieves a mean average precision at IoU =0.5
(mAP@0.5) of 0.443, meaning it correctly detects objects with at
least 50% bounding box overlap 44.3% of the time. While this
demonstrates promising potential for assistive applications,
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Fig. 12. Precision Curve for YOLOvI1-m variant.
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Fig. 13. Precision-Recall Curve for YOLOv11-m variant.

particularly given the dataset’s wide variety of objects and envir-
onments, the current performance remains insufficient for reliable
real-world deployment. Further improvements in accuracy,
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robustness under varied lighting and occlusion conditions, and
support for unseen object classes are necessary to ensure the system
meets the demands of everyday use by visually impaired
individuals.

The downward slope of the PR curve reflects the typical trade-
off in object detection: as recall increases (i.e., more true objects are
detected), precision generally decreases due to an increase in false
positives. The curve’s shape also suggests moderate class imbal-
ance and variability in detection difficulty across object categories.

The recall-confidence curve (Fig. 13) shows that the model
captures most objects at low confidence thresholds, peaking at
0.80. However, recall drops significantly as the threshold rises,
highlighting the trade-off between model certainty and object
detection coverage. These dynamics are crucial when deploying
the model in safety-critical assistive applications, where high recall
is often prioritized.

In further analysis of model performance, we observed recur-
ring issues with false positives and missed detections, partly

attributable to dataset-related factors. The class imbalance across
categories is shown in Fig. 14, which illustrates overrepresented
and underrepresented classes. The correlogram of labels (Fig. 15)
further highlights spatial biases, where most bounding boxes are
concentrated near the image center, potentially limiting detection of
peripheral objects. The model’s class distribution reveals that some
categories contain over 1600 instances, while others have fewer
than 50. This imbalance leads to skewed learning behavior, where
the model performs well on frequent classes but struggles to
generalize across underrepresented ones.

Beyond class frequency, the spatial characteristics of the
labeled objects also impact detection performance. The correlo-
gram analysis shows that most bounding boxes have relatively
small width and height, suggesting that the dataset primarily
contains small objects. Furthermore, the x and y center coordinates
are concentrated around 0.5, indicating that objects are often
located near the center of the image. This spatial bias may hinder
the model’s ability to detect peripheral objects, especially if real-
world scenes contain items near image edges or in varied positions
not well represented during training.

The off-diagonal scatter plots (6 scatterplots) show the corre-
lation between each pair of variables.

(x, y) form a cross-like shape, suggesting a central concentra-
tion of data.

While (x, width) and (y, height) show a triangle distribution
indicating a dependency, objects near the center tend to have larger
bounding boxes, for example, when width decreases, and x moves
away from the center. The model might expect bigger objects in the
center and struggle with detecting smaller objects.

(width, height): Appears skewed, meaning that small width
values dominate, and the model might struggle to detect larger
objects properly.

(y, width) & (x, height): Show mirrored patterns of the x-y
relationship. (y, width) shows that objects near the center in the
y-axis (x & 0.5) tend to have larger widths. In contrast, objects
closer to the top (y~ 1) or bottom (y ~ 0) are narrower, which
suggests spatial correlation where objects” width changes depend-
ing on y-position.

(x, height) shows objects near the center in the x-axis (x & 0.5)
tend to be taller, while objects closer to the edges (x ~ 0 or x 1) are
shorter.

The model kept improving since all the (box_loss, cls_loss,
dfl_loss) continued to decrease. mAP50(B) reached the highest
value of 0.443; after that, it started decreasing, which indicates that
the model is overfitting.

The findings underscored several takeaways: The mAPS50
value of 0.443 was insufficient for practical use, as the model
missed 55.7% of objects. An imbalanced dataset contributed to
poor generalization and bias toward the majority classes.

The relatively small image size of 640 pixels may have limited
the model’s ability to capture fine details.

Overfitting became apparent after epoch 263, where training
performance continued improving while validation performance
declined. The model also struggled with fine-grained object detec-
tion, indicating a need for better generalization techniques.

The validation process is further illustrated through batch
labels and predictions, as shown in Fig. 16 and 17.

2). SECOND RUN: YOLOv11 X-LARGE VARIANT. To overcome
the limitations of the medium variant, particularly in precision,
recall, and overfitting, we retrained the YOLOv11 X-Large model
using an enhanced training configuration and a more refined
dataset. This version of the model was trained on 56,521 images
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across 91 carefully balanced categories, each capped at 1,000
samples to mitigate class imbalance. The input resolution was
increased to 768 pixels to improve fine-grained object detection
accuracy, the maximum supported within Google Colab Pro+
memory constraints.

Training was conducted for 175 epochs with a batch size of 16
and four data loader workers, the hardware’s maximum allowable
configuration to ensure faster data throughput. While optimizer
settings (SGD with a base learning rate of 0.01 and momentum of
0.937) and loss weights (box =7.5, cls =0.5, Dfl = 1.5) remained
consistent with the medium variant to enable fair comparison, the
improved dataset and architectural scaling led to significantly better
performance.

Validation peaked at epoch 132, after which overfitting
emerged, indicating the need for additional regularization. The
X-Large model demonstrated substantial performance gains:
mAP@0.5 rose from 0.443 to 0.578, mAP@0.5-0.95 improved
from 0.329 to 0.451, and the F1 score increased from 0.43 to 0.56.
Precision and recall also improved to 0.549 and 0.603, respec-
tively. These gains are visualized in updated evaluation plots
(Fig. 17-20), reflecting a stronger balance between precision

and recall and broader detection coverage across diverse
object types.

In contrast to the ISADS version, this paper includes expanded
analysis of detection behavior, incorporating class-wise perfor-
mance disparities and spatial annotation patterns. These analyses
are presented alongside updated metrics and training curves,
providing a more complete picture of the model’s strengths,
limitations, and readiness for deployment in assistive contexts.

The model achieved a peak mAP@0.5 of 0.578, indicating
that, on average, 57.8% of the objects in the validation set were
correctly detected with at least 50% IoU between the predicted and
ground truth bounding boxes. In practical terms, this means that for
every 100 objects present, the model correctly identified approxi-
mately 58 with sufficient localization accuracy, while the remain-
ing 42 were either missed entirely or detected with insufficient
overlap.

This trend is illustrated in Fig. 21, which shows a steady
increase in mAP@0.5 throughout training, peaking at epoch 132
before exhibiting signs of performance decline due to overfitting.
The corresponding mAP@0.5-0.95 curve, shown in Fig. 22,
plateaued at 0.451, reflecting the model’s effectiveness across
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Fig. 17. Validation Batch Labels for YOLOv11-m variant. Source images are from the Google Open Images dataset, which shows actual annotations for
images.
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Fig. 18. Validation Batch Predictions for YOLOv11-m variant. Source images are from the Google Open Images dataset, the model generated
predictions.
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Fig. 19. Training box-loss metric for YOLOv1Im/x-large variant. Fig. 20. Training classification loss metric for YOLOvI 1m/x-large.

Precision was measured at 0.549, indicating that 54.9% of the
stricter IoU thresholds. Together, these values confirm improved  predicted bounding boxes correctly matched actual objects, reflect-
detection precision over the medium variant but also highlight the ing a reduction in false positives. As shown in Fig. 23, precision
model’s limitations in consistently detecting smaller or ambiguous  steadily improved across training epochs, with a peak near epoch
objects. 132 before stabilizing.
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Fig. 24. mAP50-95 for YOLOv1 I m/x-large.
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Fig. 22. Validation classification loss metric for YOLOv11m/x-large.
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Fig. 23. mAP50 for YOLOv1 1m/x-large.

Recall increased to 0.603, meaning the model successfully
detected 60.3% of all ground truth objects in the validation set.
Fig. 24 illustrates this trend, with recall rising rapidly in early

Fig. 25. Precision for YOLOvI1m/x-large.

epochs and then gradually tapering, highlighting the model’s
improved sensitivity to object presence.

The model’s F1 Score peaked at 0.56, indicating an effective
balance between precision and recall. As shown in the F1 confi-
dence curve, this optimal value was achieved at a confidence
threshold of 0.291, suggesting that this point offers the best
trade-off between identifying true positives and minimizing false
detections.

As shown in the precision—confidence curve (Fig. 26), the
model achieved a precision of 1.00 at a confidence threshold of
1.000, indicating that all predictions made at this level were correct.
However, such high precision comes at the expense of recall, as the
model becomes overly selective and may fail to detect many true
objects. This trade-off highlights the importance of tuning confi-
dence thresholds based on application-specific priorities, such as
minimizing false positives versus maximizing object coverage.

The precision—recall curve indicates that the model achieved a
mean average precision at an IoU threshold of 0.50 (mAP@0.5) of
0.578. This value reflects the average precision across all recall
levels, providing a summary of the model’s ability to correctly
identify objects with at least 50% overlap between predicted and
ground truth bounding boxes. A higher mAP@0.5 denotes stronger
overall detection performance and indicates greater reliability in
localizing and classifying objects under standard evaluation
conditions.

The recall-confidence curve (Fig. 28) demonstrates that recall
tends to decrease as the confidence threshold increases, reflecting
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Fig. 26. Recall for YOLOv11m/x-large.
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Fig. 27. F1 score for YOLOvVI11 x-large.

the model’s increasing conservatism in making predictions. The
model casts a wider net at lower thresholds, detecting more objects
but with less certainty. In this case, the model achieved a maximum
recall of 0.88 at a confidence threshold of 0.000, meaning it
successfully identified 88% of all objects when operating without
confidence-based filtering. This curve is valuable for selecting an
optimal threshold that balances high recall with acceptable preci-
sion, depending on the application’s sensitivity to missed
detections.

The model also shows that the class distribution is imbalanced,
as some classes have up to 5500 instances while others are close to
zero. This will result in the model performing well in overrepre-
sented classes but poorly in underrepresented ones.

The labels correlogram: In my model, the width and height are
primarily small, which means that most of my objects in the dataset
are small. The x and y are centered around 0.5, meaning the objects
are often located near the image center. If the dataset lacks objects

3.6 Precision-Confidence Curve

= all classes 1.00 at 1.000

0.8

0.6

Precision

0.4

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Confidence

Fig. 28. Precision Curve for YOLOvI1-X-Large variant.

near the edges, the model might struggle to detect them in
those areas.

(width, height): Appears skewed, meaning that small width
values dominate, and the model might struggle to detect larger
objects properly.

(x, height) shows objects near the center in the x-axis (x &~ 0.5)
tend to be taller, while objects closer to the edges (x 0 orx ~ 1) are
shorter.

(y, width) & (x, height): Show mirrored patterns of the x-y
relationship. (y, width) shows that objects near the center in the
y-axis (x = 0.5) tend to have larger widths while objects closer the
top (y = 1) or bottom (y ~ 0) are narrower, which suggests spatial
correlation where objects’ width changes depending on y-position.

(x, y) form a cross-like shape suggesting a central concentra-
tion of data.

While (x, width) and (y, height) show a triangle distribution
indicating a dependency, objects near the center tend to have larger
bounding boxes, for example, when width decreases and x moves
away from the center. The model might expect bigger objects in the
center and struggle with detecting smaller objects.

Scaling to YOLOv11 X-Large and balancing classes yielded
13.5 % higher mAP and 14.6 % better recall, validating the
methodological improvement in dataset curation and architectural
scaling.

Several key observations emerged from the evaluation. During
training, all core loss components—box loss, classification loss,
and DFL—continued to decrease, indicating that the model was
effectively minimizing prediction errors on the training set. The
mAP@0.5 reached its peak value of 0.578 at epoch 132.

However, beyond this point, mAP@0.5 began to decline,
suggesting that while training loss continued to improve, validation
performance started to degrade. This divergence is a strong indicator
of overfitting and suggests that extending training beyond the peak
epoch may negatively impact the model’s generalization ability.

The evaluation for the X-Large variant is further demonstrated
through validation batch labels and predictions (Figs. 32 and 33).

A comparison between the retrained YOLOvI1 X-Large
model and the initial YOLOv11 Medium variant highlights several
key improvements. The mAP@0.5 increased from 0.443 to 0.578,
reflecting a significant gain in object detection accuracy.

Similarly, recall improved from 0.457 to 0.603, indicating the
model’s enhanced ability to detect a higher proportion of true
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Fig. 29. Precision-Recall Curve for YOLOv11-X-Large variant.
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Fig. 30. Recall Curve for YOLOv11-X-Large variant.

objects. These gains are attributed to a more balanced and focused
dataset, increased image resolution (768 PX), and more powerful
architecture with optimized training configurations.

The larger image size contributed to finer bounding box
predictions, and the class balancing improved consistency across
object categories. However, overfitting emerged beyond epoch
132, where training losses continued to decline while validation
metrics began to plateau or deteriorate. This divergence suggests
the need for stronger regularization or early stopping techniques in
future iterations. Overall, the results confirm that scaling up model
capacity and improving data quality can substantially enhance
detection performance, though careful tuning remains essential
to generalization.

IV. EXPERIMENT RESULTS AND
ANALYSIS

This section presents a detailed performance comparison between
the YOLOv11 Medium and YOLOv11 X-Large models, followed
by an evaluation of how OWL-ViT [9] enhances the My Eye Al
detection pipeline. Fig. 34 shows the process of OWL-ViT inte-
gration for open vocabulary detection.
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Fig. 31. Class imbalance for YOLOv11-X-Large variant.

A. YOLOv11 MEDIUM VS. X-LARGE:
COMPARATIVE ANALYSIS

1). DETECTION ACCURACY: MAP@0.5 AND MAP@0.5-0.95. The
mean average precision (mAP) [25] across varying intersection-
over-union (IoU) thresholds measure the models’ overall detection
accuracy:

YOLOv11 Medium: mAP50 =0.443, mAP50-95 =0.329
YOLOv11 X-Large: mAP50 =0.578, mAP50-95=0.451

Key Finding: The X-Large variant significantly outperformed
the Medium model, achieving a 13.5% improvement in mAP@0.5
and a 12.2% gain in mAP@0.5-0.95, highlighting its stronger
object localization and recognition capability across varying IoU
thresholds.

2). PRECISION-RECALL TRADE-OFF AND F1 SCORE [24].
YOLOvV11 Medium: Precision = 0.489, Recall =0.457, F1 Score =
0.43

YOLOV11 X-Large: Precision =0.549, Recall =0.603, F1
Score =0.56

Key Finding: The increase in F1 score from 0.43 to 0.56
demonstrates a better balance between precision and recall in the
X-Large model. This balance enhances real-world object detection,
reducing both false positives and false negatives.

3). OVERFITTING BEHAVIOR AND  GENERALIZATION.
YOLOv11 Medium: Validation loss began to increase after epoch
263, indicating the onset of overfitting, where the model started
memorizing training data rather than generalizing.

YOLOv11 X-Large: Overfitting was observed earlier at
epoch 132, likely due to the model’s higher capacity. However,
the effects were less severe, owing to a more balanced dataset and
improved data augmentation strategies.

Key Finding: Despite both models exhibiting signs of over-
fitting, YOLOv11 X-Large demonstrated better generalization,
with stronger performance on unseen data and reduced premature
convergence.

B. OWL-ViT’S CONTRIBUTION TO
OPEN-VOCABULARY DETECTION

One limitation of conventional YOLO-based models is that they
are restricted to detecting objects within a fixed set of predefined
training categories. This constraint reduces flexibility in dynamic,
real-world environments where users may refer to objects not seen
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Fig. 32. Labels correlogram for YOLOv11-X-Large variant.

during training. To overcome this, My Eye Al integrates OWL-
ViT (Open-World Learning Vision Transformer), which en-
ables zero-shot object detection using natural language prompts.

Integrating OWL-VIiT introduced open-vocabulary capability,
amethodological expansion beyond fixed-class detection, strength-
ening the system’s adaptability.

Unlike YOLOv11, which relies on hard-coded class labels,
OWL-ViT supports open-vocabulary detection, allowing users to
make object queries using natural phrases such as “Do you see my
keys?.” OWL-VIiT converts the input query into a text embedding
and compares it with image regions to locate objects that were not
explicitly annotated or trained in the YOLO pipeline.

1). EXPERIMENTAL EVALUATION. OWL-ViT was evaluated in
two testing scenarios:

¢ Known Object Detection: When evaluating known object
classes already included in the YOLOv11 training set, the
system defaulted to YOLO’s prediction, and OWL-ViT was
not needed.

* Unknown Object Detection: For object categories not present
in the YOLO training data, OWL-ViT successfully identified
the target in 71.4% of test cases using zero-shot inference and
natural language descriptions.

Key Finding: OWL-VIiT significantly extended My Eye AI’s
detection capabilities, achieving 71.4% accuracy in detecting
objects outside YOLOv11’s known categories. This demonstrates
its effectiveness in open-world applications, where adaptability to
new or user-defined object classes is critical for real-world deploy-
ment [9].

C. CONFUSION MATRIX AND ERROR ANALYSIS

To further understand detection behavior and category-level per-
formance, confusion matrices [26] were generated for both the
YOLOv11 Medium and X-Large models. These matrices visualize
class-level predictions and misclassifications, providing insights
into how frequently objects were correctly identified versus mis-
classified or missed entirely.
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Fig. 34. validation batch predictions for the YOLOv11-X-Large variant. Source images are from the Google Open Images dataset, the model generated

predictions.

To quantify the results, Table III presents the true positives
(TP), false positives (FP), and false negatives (FN) for each model.
These metrics reveal how accurately the models detected the
correct classes and how often they produced incorrect or missed
predictions.

As illustrated in Fig. 35 and 36, confusion matrices capture
class-level misclassifications. The corresponding TP, FP, and FN
metrics are summarized in Table III.

Key Finding: The YOLOv11 X-Large model achieved a
14.6% reduction in false negatives compared to the Medium
variant. This improvement indicates that the X-Large model was

more effective at minimizing missed detections—an essential
capability for assistive applications where failure to recognize
key objects could compromise user safety or utility.

D. LATENCY ANALYSIS (ESTIMATED
PERFORMANCE)

To provide a preliminary quantitative comparison of inference
efficiency across the My Eye Al components, representative
latency values were compiled from publicly available benchmarks
of models with comparable architectures (YOLOv8/YOLOv10 for
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Table I. Epoch-wise training loss and evaluation metrics for object detection (YOLO-m variant Model)

Train/ Train/ Train/ Metrics/ Metrics/ Metrics/ Metrics/
Epoch Time box_loss cls_loss dfl_loss precision (B) recall (B) mAP50 (B) mAP50 (B)
1 6146.05 1.27478 5.06465 1.51807 0.31921 0.18408 0.09948 0.06794
50 63956.8 1.21053 2.93702 1.47388 0.43841 0.35056 0.31991 0.23344
100 354925 1.17524 2.7017 1.43752 0.4678 0.39628 0.37405 0.27355
150 636188 1.13809 2.50146 1.40645 0.47544 0.4241 0.4028 0.29592
200 46183.7 1.09463 2.2708 1.36633 0.48156 0.44372 0.42587 0.31423
250 236174 1.02692 1.96605 1.31127 0.49351 0.46099 0.4425 0.32851
Best - 263 311188 1.00221 1.85789 1.29377 0.4893 0.45721 0.44306 0.32943
275 372542 0.98015 1.74214 1.27559 0.48592 0.45535 0.44215 0.32884
Last - 300 503270 0.82456 1.03199 1.16741 0.47728 0.43904 0.42935 0.3179
Table Il. Epoch-wise training loss and evaluation metrics for object detection (YOLO-X-large variant Model)

train/ train/ train/ metrics/ metrics/ metrics/ metrics/
Epoch time box_loss cls_loss dfl_loss precision (B) recall (B) mAP50 (B) mAP50 (B)
1 1088.4 1.05185 272336 1.35631 0.42798 0.3395 0.29622 021116
50 17273.7 1.02547 1.64956 1.33351 0.54167 0.54634 0.53748 0.41707
100 312923 0.96956 1.43168 1.28665 0.56233 0.56392 0.56849 0.44417
Best -132 1012.67 0.94462 1.3176 1.26817 0.54927 0.60328 0.57805 0.45102
150 40187.4 0.91199 1.17968 1.2327 0.57812 0.56418 0.5735 0.44696
175 5061.18 0.84656 0.98268 1.18485 0.55348 0.58062 0.56708 0.44261

OWL-VIT ACTIVATES AS FALLBACK FOR ZERO-
SHOT DETECTION

USES JOINT TEXT-IMAGE EMBEDDINGS TO
MATCH USER PROMPTS WITH VISUAL REGIONS

( ACHIEVED 71.4% DETECTION RATE ON OBJECTS
OUTSIDE YOLO’S TRAINING SET

ENHANCES REAL-WORLD USABILITY WITH
FLEXIBLE, NATURAL LANGUAGE INTERACTION

Fig. 35. OWL-VIiT integration for open vocabulary detection.

Table lll. TP, FP, FN metrics for YOLOv1l (M & X-large
Variant)

Model

YOLOv11 True positives False positives False negatives
Medium 45.7% 51.1% 54.3%
X-Large 60.3% 45.1% 39.7%

YOLOV11 estimates, ViT-B/16 for OWL-ViT, and BLIP-base for
captioning).

All values correspond to single-image inference (batch = 1) on
a T4 GPU backend at standard input resolutions. These data serve
as indicative reference points until full end-to-end measurements
are completed (Table IV). Estimated latency and throughput values
derived from comparable public benchmarks of YOLOvS/
YOLOv10, ViT-B/16, and BLIP-base architectures. All values
correspond to single-image inference (batch =1) on T4 GPU).

1). INTERPRETATION. These indicative results suggest that
OWL-VIT introduces roughly 2-3x greater latency than the
YOLOvV11 X-Large detector, reflecting the additional transformer
computations required for open-vocabulary matching.

Despite this overhead, the hybrid pipeline (YOLO — OWL-
ViT — BLIP — TTS) is projected to maintain end-to-end latency
below =~ 1.3 s (p95) under cloud inference—within the real-time
threshold typically acceptable for assistive applications.

Subsequent work will report comprehensive empirical bench-
marks, including variance across hardware types and mobile
edge tests.

V. DISCUSSION AND INNOVATION

This section highlights My Eye AI’s unique innovations compared
to existing assistive technologies and discusses technical
challenges.

The experiments demonstrated measurable advances:
mAP@0.5 improved by 13.5 %, recall by 14.6 %, and F1 from
0.43 to 0.56. False negatives decreased by 14.6 %, and OWL-ViT
achieved 71.4 % accuracy on unseen objects. Remaining issues
include dataset imbalance and transformer-based latency, both
discussed with proposed mitigation strategies.

A. KEY INNOVATIONS

My Eye Al introduces several technological innovations that
distinguish it from existing assistive applications. Through a hybrid
cloud-mobile architecture, a sequential object detection frame-
work, refined dataset design, and multimodal scene understanding,
the system offers enhanced adaptability, performance, and user
accessibility for the visually impaired.
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Fig. 37. Confusion matrix for YOLOv11-X-Large variant.

1). HYBRID CLOUD-MOBILE ARCHITECTURE. Unlike fully on-
device Al systems, My Eye Al employs a cloud-hosted inference
API to handle computationally intensive tasks. This design enables
real-time processing on mobile devices without requiring high-end

My Eye Al: A Hybrid Cloud-Mobile Object Detection System 15

hardware. Offloading inference to the cloud ensures seamless
scalability, frequent model updates, and low latency across a
wide range of smartphones, thereby improving accessibility and
reducing device constraints.

2). SEQUENTIAL DETECTION WITH YOLOv11 AND OWL-VIT.
To address the limitations of fixed-class object detection, My Eye
Al combines YOLOvVI1 for fast known-object detection with
OWL-VIT for open-vocabulary inference. If YOLO fails to recog-
nize an object, the system dynamically engages OWL-ViT, which
processes user-defined natural language queries and generates
semantic embeddings to locate unfamiliar objects [9]. This dual-
model pipeline significantly improves flexibility and usability in
open-world settings.

3). OPTIMIZED DATASET AND TRAINING STRATEGY. My Eye
Al’s training pipeline leverages a custom-curated dataset focused
on common indoor objects. The dataset was reannotated, redundant
categories were removed, and class balancing was enforced to
ensure equitable model performance across frequent and under-
represented items. The use of the YOLOvll X-Large variant
further improves feature extraction and detection accuracy without
requiring specialized hardware, making the system cost-effective
and scalable.

4). BLIP FOR MULTIMODAL SCENE UNDERSTANDING. In
addition to object-level detection, My Eye Al integrates BLIP to
generate rich scene descriptions. BLIP produces contextual, natural
language captions based on visual input, offering users a holistic
understanding of their environment [6]. This enhances situational
awareness and supports navigation, surpassing basic object detec-
tion by providing meaningful narrative context.

The addition of BLIP enhanced multimodal understanding,
demonstrating the benefit of unifying computer vision and lan-
guage models for assistive Al

Practical Impact. The four core innovations—(1) cloud-
based inference offload, (2) sequential YOLO — OWL-VIiT rout-
ing, (3) curated balanced dataset, and (4) BLIP scene captions—
translate directly into tangible benefits for end-users:

* Broader device support without costly wearables,

* Coverage of unseen objects through natural-language queries,

* 14.6 % fewer missed detections with the YOLOv11-X-Large
model, and

* Richer situational awareness via contextual scene descriptions.

e These elements collectively improve independence and

confidence for visually impaired individuals in daily
navigation.

5). TOWARD EDGE-BASED DEPLOYMENT. Although the cur-
rent version relies on cloud infrastructure, My Eye Al is designed
for future deployment on edge devices. Ongoing development
focuses on shifting inference to mobile hardware, enabling fully
offline functionality. This evolution enhances user privacy, reduces

Table IV. Estimated latency and throughput values derived from comparable public benchmarks of YOLOv8/YOLOv10, ViT-B/16,
and BLIP-base architectures. All values correspond to single-image inference (batch = 1) on T4 GPU

Model Backend Resolution Query type Mean (ms) p50(ms) p95 (ms) p99 (ms) Throughput (reg/s)
YOLOv11-Medium T4 GPU 640 x 640 Known ~ 420 ~ 410 ~ 470 ~ 510 ~ 2.3
YOLOv11-X-Large T4 GPU 768 x 768 Known ~ 690 =~ 660 ~ 740 ~ 790 ~ 1.5
OWL-VIiT (B/16) T4 GPU 768 X 768 Open-vocab 1520 ~ 1470 ~ 1620 ~ 1680 ~ 0.65
BLIP (Base) T4 GPU 768 X 768 Scene caption ~ 880 ~ 860 ~ 930 ~ 980 ~ 1.1
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reliance on internet connectivity and ensures continuous accessi-
bility in low-bandwidth environments.

Key Takeaway: My Eye AI’s layered innovation—cloud-
based inference, open-vocabulary detection, dataset optimization,
and integration of scene understanding—positions it as a next-
generation assistive system. It bridges the gap between high-
performance object recognition and practical, real-world deploy-
ment for visually impaired users.

B. CHALLENGES AND SOLUTIONS

Despite the notable advancements introduced by My Eye Al,
several technical challenges remain. This section outlines key
limitations encountered during system development and proposed
strategies for addressing them in future work.

1). CLASS IMBALANCE. The training dataset exhibited signifi-
cant class imbalance, with some object categories containing over
1,600 samples while others had fewer than 50. This disparity
adversely affected generalization, particularly for underrepresented
objects.

Proposed Solution: Future training cycles will implement
strategies such as oversampling underrepresented classes and
undersampling overrepresented ones and applying class-weighted
loss functions. These techniques aim to enhance balanced learning
and improve detection performance across all object categories.

2). OVERFITTING. Even with the improved YOLOv11 X-Large
configuration, overfitting remained a challenge, becoming evident
beyond epoch 132 as validation performance began to degrade.

Proposed Solution: To address overfitting, regularization
techniques such as dropout, L2 weight penalties, and early stopping
will be explored. Additionally, increasing training data diversity
through data augmentation or targeted collection of underrepre-
sented object views may further improve generalization.

3). REAL-TIME PERFORMANCE CONSTRAINTS. While OWL-
ViT offers powerful open-vocabulary detection, its transformer-
based architecture introduces additional inference time, which can
hinder real-time responsiveness on mobile devices.

Proposed Solution: Performance optimization strategies such
as model quantization, parameter pruning, and transitioning toward
edge-based inference will be adopted. These methods aim to reduce
model size and computational demand, enabling low-latency oper-
ation suitable for assistive real-time use cases.

VI. CONCLUSION AND FUTURE WORK

This project presented the design, implementation, and evaluation
of My Eye Al, a mobile-based assistive system aimed at enhancing
the independence and situational awareness of visually impaired
individuals. Built using conventional smartphone resources and
powered by a hybrid cloud-mobile architecture, the system deliv-
ered real-time object detection, contextual scene understanding,
and open-vocabulary recognition.

My Eye Al integrated a dual-stage detection pipeline consist-
ing of YOLOV11 for fast, known-object recognition and OWL-
ViT for zero-shot detection of novel objects using natural language
queries. The retrained YOLOv11 X-Large model achieved sub-
stantial performance gains: mAP@0.5 increased from 0.443 to
0.578, recall improved from 0.457 to 0.603, and F1 score rose from
0.43 to 0.56. Furthermore, OWL-ViT successfully detected 71.4 %
of unseen objects, significantly expanding the system’s flexibility
and real-world applicability.

Despite these advancements, several challenges remain. Over-
fitting was observed beyond epoch 132, and class imbalance
continued to affect detection performance across rare object cate-
gories. Additionally, the transformer-based OWL-ViT architecture
introduced latency that may hinder responsiveness on lower-end
devices.

To address these limitations, future development will focus on:

» Using higher input resolutions (e.g., 1024) to enhance fine-
grained localization

* Employing advanced training strategies, such as multi-scale
training, AdamW optimization, and targeted data
augmentation

* Deploying lightweight models through quantization and
pruning for mobile optimization

* Migrating inference to edge devices to ensure offline, low-
latency accessibility

* Improving dataset balancing and incorporating user-driven
feedback mechanisms to refine detection relevance

* Maintain p95 latency < 1.2 s on mid-range smartphones via
cloud inference,

* Reduce OWL-VIiT latency by > 30 % using quantization and
pruning, and

* Achieve SUS > 80 in a controlled user study of 8—12 visually
impaired participants.

Planned tasks include T1—object query, T2—obstacle/way-
finding, and T3—scene summary. Metrics will include success
rate, response time, perceived helpfulness, and qualitative feed-
back. Ethics approval and accessibility accommodations will be
ensured.

Together, these enhancements will advance My Eye Al toward
becoming a robust, scalable, and context-aware assistive solution
—bridging the gap between cutting-edge computer vision and
practical deployment for the visually impaired. The system’s
modular design, open-vocabulary capability, and adaptability posi-
tion it as a next-generation tool for real-world assistive technology.
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