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Abstract: Effective management of smart food systems in Aceh, Indonesia, requires accurate forecasting, assessment of regional
vulnerability, and robust supply chain monitoring. This study presents a multistage machine learning (ML) framework
integrating predictive modeling, clustering optimization, and classification to support evidence-based food management
decisions. Ridge regression projected food commodity prices for 2025–2028, achieving an average mean squared error
(MSE) of 43.045.946 and an average root mean squared error (RMSE) of 4.352,238, capturing trends for both staple and high-
value commodities. Regional food vulnerability is evaluated using K-means clustering enhanced with simple additive weighting
(SAW)-based centroid initialization, which reduces the average number of iterations to 7.5 compared to 8.7 for standard K-
means. The SAW-enhanced clustering achieves an average Calinski–Harabasz score of 40.887 and an average Silhouette Score
of 0.288, generating three coherent clusters: Food Secure, Food Vulnerable, and Food Insecure. Classification of regional supply
chain stability using support vector machines (SVM) with radial basis function (RBF) and sigmoid kernels alongside random
forest (RF) demonstrates that SVM-RBF attains 94.59% accuracy, SVM-sigmoid reaches 46%, and RF achieves a mean 10-fold
cross-validation accuracy of 98.89% with low variability and F1-scores ranging from 0.985 to 0.995. By integrating predictive,
clustering, and classification analyses, this framework provides actionable insights that enable policymakers to anticipate price
fluctuations, identify vulnerable districts, and implement targeted interventions, thereby enhancing food security and resilience in
Aceh. The proposed methodology highlights the value of combining multiple ML approaches for optimizing smart food systems
in regional contexts.

Keywords: Aceh; commodity price prediction; machine learning; smart food system; supply chain classification; vulnerability
clustering optimization

I. INTRODUCTION
Food security has long been recognized as one of the most critical
global challenges, closely linked to the achievement of the United
Nations Sustainable Development Goals (SDGs) [1]. Ensuring
consistent access to affordable, safe, and nutritious food is funda-
mental to human development, yet many regions continue to
experience volatility in both supply and distribution [2]. Increasing
socioeconomic pressures, climate variability, and disruptions in
global trade have further undermined food system stability, creat-
ing a demand for innovative approaches in prediction, monitoring,
and management. Within this context, artificial intelligence (AI)
and machine learning (ML) are increasingly applied to address
such complexities through predictive analytics and data-driven
decision support [3]. Indonesia, with its diverse agricultural
base, illustrates both the opportunities and vulnerabilities of
food systems management [4]. Aceh Province, in particular,
represents a critical case due to its reliance on staple commodities
such as rice, starchy foods, and fish [5].

Although local production remains central to food availability,
recurring issues including price instability, inefficient distribution

networks, and regional disparities in supply–demand balance
continue to compromise system resilience [6]. Traditional statisti-
cal models often fall short in capturing these multidimensional and
nonlinear interactions, thereby limiting their utility for long-term
planning and effective policy design [7].

ML provides a promising alternative by integrating heteroge-
neous datasets and uncovering latent patterns in complex systems
[8]. Predictive models such as regression, clustering, and classifi-
cation enable the forecasting of commodity trends, identification of
vulnerable regions, and classification of supply chain stability [9].
Recent studies have applied ML to agricultural forecasting, com-
modity price modeling, and supply chain analysis [10]. However,
most approaches have remained methodologically fragmented,
focusing on a single ML technique or lacking an integrated
framework that can provide comprehensive and actionable insights
for policy [11]. In the context of Aceh, fragmented applications of
ML risk overlooking critical interdependencies between produc-
tion, consumption, and population growth [12]. For example,
regression models may predict future price trajectories but fail
to identify stability levels within the supply chain, while clustering
methods may group regions by vulnerability without providing
forward-looking projections [13]. Addressing these limitations
requires a more holistic framework that combines complementary
ML methods to deliver both predictive accuracy and diagnosticCorresponding author: Novia Hasdyna (e-mail: noviahasdyna@uniki.ac.id).
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clarity [14]. This study introduces an integratedML framework that
combines ridge regression for commodity price forecasting,
K-means clustering for regional vulnerability detection, and
random forest (RF) classification for supply chain stability
analysis.

The contributions of this study are threefold. First, it proposes
a multistage ML framework that unifies regression, clustering, and
classification into a single system for smart food systems manage-
ment. Second, it applies this framework to Aceh Province, a region
characterized by unique food system dynamics but limited empiri-
cal research using advanced data-driven methods. Third, it pro-
vides empirical evidence of the policy relevance of ML-based
decision support, demonstrating how predictive and diagnostic
outputs can inform targeted interventions and strengthen food
resilience.

Unlike prior studies that typically apply a single ML technique
in isolation, this research advances a fully integrated framework
that captures interdependencies across forecasting, clustering, and
classification tasks. This holistic approach not only enhances
methodological robustness but also ensures greater policy applica-
bility, marking a clear novelty in the context of regional food
systems optimization.

The remainder of this paper is structured as follows. Section II
reviews related works on ML applications in food systems man-
agement and supply chain analysis. Section III outlines the meth-
odology, including dataset description and the integrated ML
framework. Section IV presents the results of regression forecast-
ing, vulnerability clustering, and supply stability classification.
Finally, Section V concludes the study and outlines directions
for future research.

II. RELATED WORKS
In recent years, a growing body of research has examined the role
of ML in addressing food security and optimizing supply chain
management. Previous studies have primarily focused on global or
national contexts, applying various predictive and classification
models to assess production trends, price dynamics, and distribu-
tion vulnerabilities. These works demonstrate the potential of data-
driven approaches to support decision-making in agriculture and
food systems, particularly through techniques such as regression
forecasting, clustering, and classification.

Despite these contributions, most existing studies remain
concentrated on broader regions or specific commodities, leaving
significant gaps at the subnational level. In particular, research
addressing localized food system challenges in Aceh, Indonesia, is
virtually absent. The unique socioeconomic characteristics, agri-
cultural diversity, and regional vulnerabilities in Aceh necessitate a
tailored approach that integrates both forecasting and classification
within a unified framework.

Therefore, this study distinguishes itself by proposing an
integrated ML framework specifically designed for the food
system in Aceh. Unlike prior works that address food security
at the global or national scale, this research combines regression
forecasting, clustering optimization, and stability classification to
generate actionable insights for regional policymakers. This con-
tribution highlights the novelty of applying a comprehensive,
localized analytical framework to support food system resilience
in Aceh. Table I presents a comparative overview of previous
works on ML applications in food security and supply chain
management.

III. MATERIALS AND METHODS
This study applies a suite of ML approaches to advance smart food
systems management in Aceh, Indonesia. The methodological
framework encompasses three core components: commodity price
forecasting, optimization of regional food vulnerability clustering,
and classification of food supply chains.

A. PROPOSED METHOD

This study proposes a three-stage ML framework to enhance smart
food systems management in Aceh, as illustrated in Fig. 1. The first
stage focuses on commodity price forecasting using ridge regres-
sion, chosen for its ability to handle multicollinearity and provide
stable predictions. Forecast accuracy is evaluated with mean
squared error (MSE) and root mean squared error (RMSE) to
ensure minimal prediction error.

The second stage addresses regional food vulnerability clustering.
K-means groups districts based on vulnerability profiles, while the
integration of simple additive weighting (SAW) optimizes centroid
initialization, enhancing cluster stability and interpretability. Cluster-
ing performance is measured using the Calinski–Harabasz (CH) index
and Silhouette Score (SS) to ensure cohesion and separation.

The final stage involves classifying the food supply chain into
distinct categories using support vector machine (SVM) and RF,
representingmargin-based and ensemble learning approaches.Model
robustness and generalization are validated through 10-fold cross-
validation to ensure statistically reliable results resistant to overfitting.

Algorithm selection at each stage is systematically guided by
the Design of Experiments (DOE) framework [25], ensuring that
choices are grounded in methodological reasoning rather than
arbitrariness. The process relies on three key criteria: interpretabil-
ity and policy relevance, computational efficiency relative to the
dataset’s size and structure, and robustness against overfitting,
verified through comprehensive cross-validation.

Accordingly, ridge regression is chosen for price forecasting
due to its ability to handle multicollinearity while maintaining
transparent coefficient interpretation. K-means is employed for
clustering because of its simplicity and efficiency and is further
refined via the SAWmethod to stabilize centroid initialization. For
classification, SVM and RF are utilized to capture two distinct
learning paradigms—margin-based and ensemble-based enabling a
thorough comparative evaluation.

The DOE-guided framework ensures that algorithm selection
is conducted in a structured, criteria-driven manner, promoting
methodological rigor, transparency, and reproducibility over intui-
tion or random choice.

B. FOOD COMMODITY PRICE FORECASTING
USING A RIDGE REGRESSION MODEL

Price forecasting is conducted using ridge regression, a regularized
linear regression technique designed to address multicollinearity
and mitigate overfitting by introducing an L2 penalty term into the
cost function, as formally expressed in Equation (1) [26]:

ŷi= β0
Xp
j=1

βjxij þ α
Xp
j=1

β2j (1)

where ŷi represents the predicted commodity price, βj denotes the
regression coefficients, and α is the regularization parameter opti-
mized through cross-validation.
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The methodological procedure comprises the following
steps:

1). DATA COLLECTION. The dataset employed in this study is
obtained from the Aceh Food Agency (Dinas Pangan Aceh), which
records the average annual retail prices of 12 strategic food

commodities. The commodities include rice (premium and
medium), dried soybeans, shallots, garlic, red chili peppers,
beef, broiler chicken meat, chicken eggs, granulated sugar, pack-
aged cooking oil, and wheat flour. The dataset spans from 2017 to
2024, as shown in Table II.

Table I. Comparative analysis of food security and supply chain research and differences with current study

Reference Methodology Objectives Techniques used Key contributions

[15] Purposive and
random
sampling

Assess food security under COVID-19
and climate change

ANOVA COVID-19 reduced yields and supply
chain; climate change a major threat;
recommended subsidies and adaptation

[16] Literature
review; case
studies (Canada
and USA)

Examine COVID-19 impact on food
security and GFSC; propose resilience
framework

Analysis of open data and
prior studies

Identified GFSC disruptions (labor,
transport, production, and demand);
proposed framework for smarter, resil-
ient post-COVID-19 food supply chains

[17] Bibliometric
analysis

Review evolution of agri-food supply
chain research and identify trends

Topic mapping Identified emerging topics (blockchain,
IoT, resilience, and short food supply
chains), hot topics (LCA, environmental
impact, and food waste), and common
SCM and SSCM practices

[18] PESTEL analy-
sis; ANP and
MAIRCA
methods

Identify factors of blockchain in agri-
food supply chains

PESTEL, Analytic Network
Process (ANP), MAIRCA

Determined 12 critical success factors;
highlighted top factors: “prevent food
waste,” “increase food security,”
“product lifecycle tracking”; linked
blockchain adoption with circular
economy and sustainability

[19] Comparative
review

Explore urban farming’s impact on food
supply in the USA and African cities

Literature review, policy, and
case analysis

Highlighted role of urban farming in
food security; identified success factors
in USA

[20] Review and
synthesis
analysis

Examine benefits and challenges in food
supply chains

Literature review, synthesis
analysis

Enhances efficiency in food supply
chains

[21] Review and
conceptual
framework

Examine blockchain and IoT integration
in agri-food supply chains; propose
architecture

Literature review, Agri-SCM-
BIoT framework

Proposed blockchain+ IoT architecture
for transparency, traceability, security,
privacy, and scalability

[22] Systematic liter-
ature review+
single use-case
analysis

Explore blockchain’s role in achieving
operational excellence

CIMO logic, semi-structured
interviews

Showed blockchain features (immuta-
bility, transparency, traceability, and
smart contracts) enhance responsive-
ness, flexibility, efficiency, and collab-
oration in PFSC under COVID-19

[23] Survey (n= 398,
Thailand)

Identify drivers of (FDAs) Partial least squares (PLS) Practical implications for FDA retention
strategies

[24] Time-series
analysis

Predict food production for policymak-
ing and food security planning

Machine learning: Adaptive
Network-based Fuzzy Infer-
ence System (ANFIS)

ANFIS with Gbell membership func-
tions provided lowest prediction error

Current
study

Multistage
machine learning
framework

Optimize smart food systems manage-
ment in Aceh through forecasting, vul-
nerability assessment, and supply chain
monitoring

Ridge regression, K-means
clustering with SAW centroid
initialization, SVM (RBF and
sigmoid), random forest

Integrated prediction, clustering, and
classification for actionable insights;
high forecasting accuracy optimized
clustering (CH: 40.887; Silhouette:
0.288), and robust classification (SVM-
RBF 94.59%, random forest 98.89%);
supports evidence-based policy and
resilience planning

Fig. 1. Proposed method of machine learning approaches for smart food systems management in Aceh.
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2). MODEL TRAINING. Ridge regression is applied, and cross-
validation is performed to determine the optimal penalty parameter
(α), minimizing predictive bias and variance.

3). FORECASTING. The trained model is employed to project
commodity prices for 2025–2028.

4). MODEL EVALUATION. Predictive performance is assessed
using standard statistical indicators, including MSE and RMSE,
as expressed in Equations (2) and (3), respectively:

MSE =
i
n

Xn
i=1

ðYi − ŶiÞ2 (2)

where n is the total number of observations. A lower MSE indicates
that the predicted values are closer to the actual observed values,
reflecting better model performance. MSE is particularly sensitive
to large errors because deviations are squared, thus giving more
weight to outliers.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

ðYi − ŶiÞ2
s

(3)

In this formula, Yi denotes the observed value, Ŷi is the
predicted value, and n is the number of observations. A lower
RMSE indicates higher forecasting accuracy and makes interpre-
tation easier compared to MSE.

C. REGIONAL FOOD VULNERABILITY
CLUSTERING OPTIMIZATION

This stage assesses and optimizes regional food vulnerability in
Aceh to identify districts requiring prioritized interventions. The
analysis uses the Annual Food Supply and Demand Data Across
Commodities in Aceh, with variables listed in Table III. Two
clustering approaches are applied: standard K-means and SAW-K-
means, which integrates SAW to improve centroid initialization,
enhancing clustering stability and robustness.

1). K-MEANS CLUSTERING. The K-means algorithm is applied
through the following steps [27]:

1. Initialize centroids
Randomly select k initial centroids from the dataset to serve as
starting points.

2. Assign districts
Each district i is assigned to the nearest centroid byminimizing
the Euclidean distance, defined in Equation (4):

Table II. Annual average retail prices of strategic food commodities in Aceh (2017–2024)

No Commodity 2017 2018 2019 2020 2021 2022 2023 2024

1 Premium rice 11.000 11.200 11.200 12.260 11.470 12.500 13.000 13.200

2 Medium rice 10.500 10.600 10.900 11.098 11.000 11.800 12.200 12.400

3 Dried soybeans 11.500 11.760 11.850 10.102 12.000 13.000 13.200 13.500

4 Shallots 35.000 33.400 26.300 38.062 30.715 34.000 36.500 37.000

5 Garlic (bulb) 24.300 25.850 30.000 31.600 26.206 28.000 29.000 30.200

6 Curly red chili peppers 35.375 28.500 38.000 32.371 34.739 36.000 38.000 40.000

7 Pure beef 125.000 132.900 140.000 140.879 147.500 150.000 153.000 155.000

8 Broiler chicken meat 26.000 27.000 27.500 29.735 27.406 30.000 31.200 32.000

9 Broiler chicken eggs 19.500 20.800 22.000 22.420 30.050 31.500 32.800 34.000

10 Local granulated sugar 12.500 13.000 13.000 14.832 14.000 15.000 15.500 16.000

11 Packaged cooking oil (simple) 10.000 10.000 10.500 11.484 16.178 17.500 18.000 18.500

12 Bulk wheat Flour 7.500 7.650 7.750 8.406 9.000 9.500 10.000 10.200

Table III. Annual Food Supply and Demand Data Across
Commodities in Aceh, Indonesia

Variable Description Unit

Region Name of the observed region/area Region
name

Year Year of food data observation Year

Population Total population in the region for a
specific year

People

Rice supply Total rice availability in a specific year Tons

Rice surplus Difference between supply and demand
of rice (positive= surplus, negative=
deficit)

Tons

Starchy food supply Availability of starchy foods (cassava,
maize, sweet potato, etc.)

Tons

Starchy food
demand

Total consumption demand for starchy
foods

Tons

Starchy food
surplus

Difference between supply and demand
of starchy foods

Tons

Sugar supply Total sugar availability Tons

Oilseed surplus Difference between supply and demand
of oilseeds

Tons

Fruit supply Availability of fruits Tons

Fruit demand Total fruit consumption demand Tons

Fruit surplus Difference between supply and demand
of fruits

Tons

Vegetable supply Availability of vegetables Tons

Vegetable demand Total vegetable consumption demand Tons

Milk surplus Difference between supply and demand
of milk

Tons

Oil supply Availability of edible oil (vegetable/
animal-based)

Tons

Oil demand Total oil consumption demand Tons

Oil surplus Difference between supply and demand
of oil

Tons
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kxi-μkk (4)

where xi denotes the vector of vulnerability indicators for
district i and μk is the centroid of cluster k.

3. Update centroids
Recompute each centroid μk as the mean of all points in
cluster Ck.

4. Iterate until convergence
Repeat steps 2–3 until cluster assignments stabilize. The
objective is to minimize the within-cluster sum of squares
(WCSS), defined in Equation (5):

WCSS =
XK
k=1

X
iϵCk

���xi-μk���2 (5)

where K is the number of clusters, Ck is the set of districts in
cluster k, and μk is the cluster centroid.

5. Evaluate cluster quality
The clustering performance was quantitatively evaluated using
the CH index and SS, defined in Equations (6) and (7):

CH =
TrðBkÞ=ðK-1Þ
TrðWkÞ=ðn-KÞ

(6)

Tr(Bk) is the trace of the between-cluster dispersion matrix, Tr
(Wk) is the trace of the within-cluster dispersion matrix, K is
the number of clusters, and n is the total number of observa-
tions. Higher CH values indicate more distinct and well-
separated clusters:

sðiÞ¼ bðiÞ-aðiÞ
maxfbðiÞ-aðiÞg (7)

a(i) is the average distance between observation i and other
points in the same cluster, while b(i) is the minimum average
distance to points in other clusters. The score ranges from −1
to 1, with higher values indicating more cohesive and well-
separated clusters.

2). SAW-K-MEANSCLUSTERING. The SAW-K-means approach
was implemented to enhance clustering stability and interpretabil-
ity. By integrating SAWwith K-means, cluster center initialization
becomes more structured, reducing randomness, improving
computational efficiency, and ensuring reliable clustering
outcomes.

1. Compute Composite Vulnerability Scores.
Each district i receives a composite score Si using SAW,
defined in Equation (8) [28]:

Si=
Xm
j=1

wj:rij (8)

where wj is the weight of indicator, rij is the normalized value
of indicator j for district i, and m is the total number of
indicators. In this study, the weight wj is automatically as-
signed using an equal distribution method, yielding a value of
0.027778 for each criterion. The weighting process follows an
equal-weight approach, where the total weight is evenly
divided among all identified criteria. This method ensures
that each criterion contributes equally to the overall assess-
ment, thereby promoting fairness and minimizing potential
bias toward any specific attribute in the final ranking
outcome.

2. Initialize Centroids.
Districts with the highest Si scores are selected as initial
centroids to ensure highly vulnerable regions are represented
from the outset.

3. Apply K-Means Algorithm.
Follow the standard K-means procedure (assignment, centroid
update, and iteration) using SAW-based centroids.

4. Evaluate Cluster Quality.
Cluster quality was evaluated using CH index and SS

5. Identify Food Vulnerable Districts.
Districts belonging to the cluster with the highest average Si
were designated as Food Vulnerable areas.

D. FOOD SUPPLY CHAIN CLASSIFICATION

This research employs SVM and RF to classify food supply chain
stability, as both algorithms are capable of handling high-dimen-
sional datasets and modeling nonlinear dependencies. The models
assigned districts to distinct classes based on supply chain char-
acteristics using the Annual Food Supply and Demand Data Across
Commodities in Aceh, with variables detailed in Table IV, offering
actionable insights for policymakers to identify both stable and
vulnerable regions.

1). SUPPORT VECTOR MACHINE (SVM). SVM is a supervised
method designed to find the most effective hyperplane that dis-
tinguishes between classes [29]. For linearly separable data, the
decision function is given in Equation (9):

fðxÞ = w � x + b (9)

where w represents the weight vector, x is the input feature vector,
and b is the bias. The objective is to maximize the margin between
support vectors. Mathematically, this objective can be expressed in
Equation (10):

min
w,b

1
2
kwk2 subject to Yiðw � xi þ bÞ ≥ 1 (10)

For nonlinearly separable data, the kernel trick projects input
features into a higher-dimensional space. Common kernels include
the radial basis function (RBF), defined in Equation (11):

Kðxi,xjÞ = expð−γkxi-xjk2Þ (11)

Table IV. Variables for food supply chain classification

Variable Description

Commodity Type of food commodity (e.g., rice, sugar, fish,
vegetables, etc.)

District Administrative region in Aceh where the data
were collected

Year Year of observation

Supply (tons) Total food supply available in the district

Population Total number of inhabitants in the district

Consumption
requirement (tons)

Estimated food demand based on population size
and dietary needs

Surplus (tons) Difference between supply and consumption
requirement

Status Classification label indicating supply chain
condition (e.g., surplus, deficit, or balanced)

Integrated Machine Learning Framework for Smart Food Systems Optimization in Aceh, Indonesia 5
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Here, γ controls the influence of individual samples. SVMwas
used to classify districts by mapping multidimensional food system
features to an optimal decision boundary.

2). RANDOM FOREST (RF). As an ensemble learning approach,
RF strengthens classification performance through the integration
of predictions from many individual decision trees [30]. Each
decision tree is constructed using a bootstrap sample, with node
divisions chosen from a randomly selected group of features. In this
model, the concluding prediction is determined through a majority-
vote mechanism across all decision trees, as represented in Equa-
tion (12):

Ŷ = modefh1ðxÞ,h2ðxÞ, : : : ,hrðxÞg (12)

In this equation, Ŷ denotes the final predicted class label,
where Ŷ is determined based on the individual predictions
h1ðxÞ,h2ðxÞ, : : : ,hrðxÞ generated by each decision tree within the
ensemble. The mode function identifies the most frequently occur-
ring class label among these predictions, thereby determining the
overall output of the RF model through a majority voting mecha-
nism. The splitting criterion in each decision tree is typically based
on Gini Impurity, defined in Equation (13):

GiniðDÞ = 1-
XC
i=1

p2i (13)

where pi is the proportion of samples belonging to class i and C is
the number of classes.

IV. RESULTS AND DISCUSSION
A. RESULTS OF FOOD COMMODITY PRICE
PREDICTION USING A RIDGE REGRESSION
MODEL

The first analysis stage forecasted food commodity prices using
ridge regression, which mitigates multicollinearity and enhances
model generalization through L2 regularization. Historical annual

supply and demand data for Aceh are used to train the model and
generate forecasts for 2025–2028. Performance was evaluated
using MSE and RMSE. Table V and Fig. 2 present the forecasted
prices for key commodities.

Forecasts indicate a general upward trend in Aceh’s food
commodities from 2025 to 2028. Staple grains such as premium
and medium rice and dry soybeans grow steadily, while high-value
commodities like fresh beef and red chili rise sharply due to limited
supply and market sensitivity. Perishable vegetables show signifi-
cant increases, whereas processed goods grow moderately. Ridge
regression highlights commodity vulnerability, with staples re-
maining resilient and high-demand items more exposed to shocks.
Predictive accuracy, assessed using MSE and RMSE, provides
insight into model performance, with Table VI comparing results
across all commodities. Comparative error analysis of ridge regres-
sion reveals substantial variations across commodities. Beef shows
the highest errors due to supply shocks and seasonal demand, while
shallots, red chili, and garlic also exhibit elevated errors from

Table V. Forecasted food commodity prices in Aceh, Indo-
nesia (IDR/kg), using ridge regression model

Commodity 2025 2026 2027 2028

Premium rice 15.277 16.223 17.170 18.117

Medium rice 14.332 15.207 16.082 16.957

Dry soybeans 15.391 16.337 17.283 18.228

Red onion 41.722 44.097 46.472 48.848

Garlic bulb 35.032 37.080 39.129 41.177

Curly red chili 44.885 47.635 50.384 53.134

Fresh beef 183.259 194.737 206.215 217.694

Broiler chicken 36.886 39.184 41.482 43.781

Broiler eggs 40.156 43.528 46.899 50.270

Granulated sugar (local) 18.577 19.790 21.002 22.215

Packaged cooking oil (basic) 22.098 24.070 26.041 28.012

Wheat flour (bulk) 11.904 12.748 13.591 14.435

Fig. 2. Forecasted food commodity prices in Aceh, Indonesia (IDR/kg), using ridge regression model.
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perishability and climate sensitivity. Staples like wheat flour,
medium rice, and cooking oil have the lowest errors, reflecting
stable markets, with sugar and dried soybeans in the mid-range.
MSE highlights extreme deviations, while RMSE provides a unit-
consistent measure of forecast accuracy. Fig. 3 and 4 visualize
these results.

Table VII displays the evaluation results of the ridge regres-
sion model across multiple K-fold cross-validation configurations.
The primary objective of this experiment is to identify the optimal
number of folds (K) that produces the most reliable and accurate
model performance. Each configuration is evaluated using two
principal performance metrics: MSE and RMSE, which quantify,
respectively, the average magnitude of prediction errors and the
extent of their variability. The cross-validation results show that the
ridge regression model performs consistently across different fold
settings. The lowest MSE occurs at K= 6, indicating a balanced
bias–variance trade-off, while the lowest RMSE is achieved at
K= 8, reflecting greater predictive stability. Therefore, K= 8 is
considered the optimal configuration for subsequent evaluation and
forecasting, as it minimizes prediction error and ensures robust
validation.

B. RESULTS OF REGIONAL FOOD
VULNERABILITY CLUSTERING OPTIMIZATION

The second stage of this study examines regional food vulnerability
clustering to identify districts in Aceh that require prioritized
interventions. Two approaches are implemented: the standard K-
means clustering and the enhanced SAW-K-means clustering. Both
methods aimed to classify districts into distinct vulnerability
groups based on their food supply–demand balance across multiple
commodities. The integration of the SAW method into the
initialization process was designed to reduce randomness in cen-
troid selection, thereby enhancing clustering stability and
interpretability.

Clustering identifies three categories: Food Secure, Food
Vulnerable, and Food Insecure. Food Secure districts have stable
surpluses, reflecting a resilient supply chain. Food Vulnerable
districts experience fluctuating supply–demand balances, indicat-
ing potential exposure to shocks. Food Insecure districts faced
persistent deficits, highlighting structural weaknesses in availabil-
ity and distribution. SAW-K-means produces a more balanced and
interpretable distribution than standard K-means, with the Food
Insecure cluster aligning closely with official vulnerability
indicators.

1). STANDARD K-MEANS CLUSTERING RESULTS. Standard
K-means is applied to classify food vulnerability across Aceh
districts into three categories: Food Secure, Food Vulnerable,
and Food Insecure, with results shown in Table VIII. Coastal
urban districts such as Banda Aceh, Sabang, and Lhokseumawe
were Food Secure, reflecting stable food access and infrastructure.

Table VI. Comparative evaluation of predicted food com-
modity prices (2025–2028)

No Commodity MSE RMSE

1 Beef (pure) 394,006,100 19,849.586

2 Shallots 31,715,200 5,631.625

3 Curly red chili 29,310,450 5,413.912

4 Garlic bulbs 18,905,290 4,348.021

5 Broiler chicken meat 16,452,640 4,056.185

6 Broiler chicken eggs 9,751,155 3,122.684

7 Granulated sugar (local) 3,783,863 1,945.215

8 Dried soybeans 3,224,823 1,795.779

9 Premium rice 2,842,324 1,685.919

10 Simple packaged cooking oil 2,756,257 1,660.198

11 Medium rice 2,539,593 1,593.610

12 Bulk wheat flour 1,263,658 1,124.126

Average 394,006,100 19,849.586

Fig. 3. Mean squared error (MSE) of ridge regression predicted food
commodity prices (2025–2028) in Aceh.

Fig. 4. Root mean squared error (RMSE) of ridge regression predicted
food commodity prices (2025–2028) in Aceh.

Table VII. Evaluation results of ridge regression with various
K-fold cross-validation values

No
Number of
folds (K) MSE RMSE Remark

1 5 83,835,322.18 5,229.04 –

2 6 77,351,844.18 4,834.10 Lowest MSE

3 7 81,319,392.70 5,010.14 –

4 8 79,878,235.49 4,727.36 Lowest RMSE
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Remote inland districts, including Gayo Lues, Aceh Tenggara,
Simeulue, and Bener Meriah, were Food Insecure due to geo-
graphic isolation and limited productivity. Most other districts,
such as Pidie, Aceh Utara, and Aceh Timur, were Food Vulnerable,
indicating susceptibility to supply–demand fluctuations. Cluster
distribution from 2017 to 2024 is shown in Fig. 5, with a corre-
sponding heatmap in Fig. 6.

To assess the performance and stability of the K-means
algorithm, ten runs with different initial centroid selections were
conducted. Convergence speed was measured by iteration count,
while clustering quality was evaluated using the CH index and the
SS. Results show that the CH index remained high (≈ 45.5) and the
SS stable at 0.30, reflecting consistent cluster separability with
moderate cohesion. Test 4 achieved the best outcome (CH= 45.75,
6 iterations), while Test 6 performed worst (CH = 35.35,
Silhouette = 0.29). Overall, K-means proved robust, though cen-
troid initialization influenced efficiency and cluster quality as
shown in Table IX.

2). SAW K-MEANS CLUSTERING RESULTS. The SAW-K-
means method applies SAW to calculate feature weights, enabling
more systematic centroid initialization and improving cluster dis-
tinction. This refinement addresses the key limitations of conven-
tional K-means, namely its sensitivity to random centroid selection
and the assumption of equal feature importance. The results are
summarized in Table X.

Table X presents the top 10 results from a dataset of 184
regions ranked using the SAW method. In the SAW-K-means

hybrid framework, centroid initialization was guided by SAW
rankings, with one centroid each selected from the highest, middle,
and lowest scores across 10 test iterations. Clustering performance
was subsequently assessed using CH index and SS, demonstrating
improved stability and quality through the integration of prior
ranking information as shown in Table XI.

Table XI presents the clustering performance of the SAW-K-
means hybrid method across 10 iterations. Using SAW for centroid
initialization enhances stability, with CH indices ranging from
31.85 to 45.72 and SSs mostly around 0.3. Iterations 3, 6, 9, and 10
achieve higher CH scores above 45, indicating clearer cluster
separation, while iteration 8 records the weakest performance
with the lowest CH (31.85) and Silhouette (0.2). These results
confirm that SAW-based centroid selection improves consistency
and reliability, with iteration counts (4–11) reflecting adaptive
convergence. A comparison of average results with standard
K-means is shown in Table XII and Fig. 7.

The comparison between standard K-means and SAW-K-
means shows that SAW-based centroid initialization improves
convergence speed (7.5 vs. 8.7 iterations). While standard K-means
achieves slightly higher CH (44.561 vs. 40.887) and SSs (0.299 vs.
0.288), the differences are marginal, indicating comparable clus-
tering quality overall.

C. RESULTS OF FOOD SUPPLY CHAIN
CLASSIFICATION

In this stage, the stability of the food supply chain across districts in
Aceh is assessed using supervised learning algorithms, specifically
SVM and RF. The classification models were trained to categorize
regions into predefined supply chain stability classes, leveraging
features such as commodity supply, population demand, and
surplus levels.

1). SVM RESULTS. SVM is applied to classify the stability of
food supply chains by testing two kernel functions, namely RBF
and sigmoid. Both kernels are selected to capture nonlinear re-
lationships within the dataset, while variations of the penalty
parameter C and kernel coefficient γ are analyzed to optimize
performance. The results of SVM classification with the RBF
kernel are summarized in Table XIII and Fig. 8.

Fig. 5. Food security cluster distribution in Aceh, Indonesia (2017–2024).

Table VIII. Standard K-means clustering results for food
vulnerability in Aceh Province, Indonesia

Cluster category Districts

Food Secure Banda Aceh, Sabang, Lhokseumawe, Langsa,
Subulussalam

Food Vulnerable Aceh Besar, Pidie, Bireuen, Aceh Utara, Aceh
Timur, Aceh Tamiang, Aceh Jaya, Aceh Barat
Daya, Nagan Raya, Aceh Selatan

Food Insecure Gayo Lues, Aceh Tenggara, Aceh Singkil,
Simeulue, Bener Meriah, Aceh Tengah
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SVM with RBF kernel showed strong sensitivity to C and γ,
with accuracies below 85% at low γ (0.01–0.1) and improving
above 90% for C= 100–200. The best accuracy of 94.59%

Fig. 6. Food security heatmap cluster distribution in Aceh, Indonesia (2017–2024).

Table IX. Performance evaluation of K-means iterations with
different initial centroids

Test
no.

Initial
centroids

(data index)

Number
of

iterations

Calinski–
Harabasz
index

Silhouette
Score

1 42, 142, 183 11 45.54 0.30

2 4, 124, 43 8 45.54 0.30

3 91, 178, 48 9 45.38 0.30

4 146, 169, 13 6 45.75 0.30

5 61, 123, 84 9 45.69 0.30

6 61, 155, 32 6 35.35 0.29

7 123, 137, 13 7 45.67 0.30

8 70, 74, 22 14 45.64 0.30

9 91, 62, 28 11 45.38 0.30

10 79, 80, 47 6 45.67 0.30

Table X. SAW scores and rankings for the regions

No. SAW score Ranking

153 15.3446 1

155 14.1372 2

128 8.6737 3

154 8.1976 4

109 7.4991 5

88 7.3506 6

125 7.1899 7

168 6.8346 8

166 6.7663 9

167 6.7093 10
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occurred at C= 200 and γ= 50. SVMwith sigmoid kernel was also
evaluated across C and γ to assess its handling of nonlinear
separability. In Table XIV, the SVM with a sigmoid kernel was
evaluated across varying C and γ values to assess its capability in
modeling nonlinear separability within the dataset.

The sigmoid kernel performed poorly, reaching a maximum
accuracy of only 46% (C= 100, γ= 0.01), with most results
fluctuating between 30 and 40%, indicating instability and under-
fitting. In contrast, the RBF kernel consistently delivered superior
performance, attaining 94.59% at optimal settings, thereby dem-
onstrating its effectiveness in modeling food supply chain stability.

2). RF RESULT. The classification performance of the RF model
across the three stability classes is presented in Table XV. This
report provides a detailed overview of the precision, recall, and F1-
scores, highlighting the model’s consistency in classifying Ade-
quate, Deficit, and Surplus conditions.

RF consistently classified food supply chain stability with high
performance, achieving F1-scores of 0.985–0.995, a mean 10-fold
accuracy of 98.89%, and low variability (0.75%). The RF model is

Table XI. SAW-K-means performance evaluation

Test
no.

Initial centroids
(data index) Iterations

CH
score

Silhouette
Score

1 153, 116, 12 8 35.35 0.29

2 155, 102, 24 8 35.17 0.29

3 128, 103, 146 9 45.37 0.3

4 154, 115, 80 4 33.72 0.3

5 109, 75, 35 8 45.21 0.3

6 88, 101, 38 8 45.69 0.3

7 125, 6, 138 11 45.09 0.3

8 168, 20, 98 7 31.85 0.2

9 166, 53, 4 7 45.72 0.3

10 167, 36, 74 5 45.7 0.3

Table XII. Comparison of average performance metrics
between standard K-means and SAW-enhanced K-means

Method
Average
iterations

Average CH
score

Average
silhouette

SAW+K-means 7.5 40.887 0.288

K-means 8.7 44.561 0.299

Fig. 7. Comparison of average performance metrics: standard K-means
vs. SAW-K-means.

Table XIII. Classification accuracy of SVM with RBF kernel
for different values of C and γ

C γ (Gamma) Mean accuracy (%)

100 0.01 75.92

100 0.1 83.70

100 1.0 90.28

100 5.0 91.59

100 15.0 92.61

100 50.0 93.51

200 0.01 77.99

200 0.1 84.45

200 1.0 91.53

200 5.0 92.37

200 15.0 93.48

200 50.0 94.59

Fig. 8. Comparison of classification accuracy of SVM with RBF and
sigmoid kernels for different values of C and γ.

Table XIV. Classification accuracy of SVM with sigmoid
kernel for different values of C and γ

C γ (Gamma) Mean accuracy (%)

100 0.01 46.00

100 0.1 39.59

100 1.0 30.74

100 5.0 34.50

100 15.0 38.92

100 50.0 31.99

200 0.01 44.37

200 0.1 36.33

200 1.0 30.65

200 5.0 34.50

200 15.0 38.95

200 50.0 31.99
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configured with the hyperparameter n_estimators= 100, which
specifies the number of decision trees in the ensemble. This value
strikes an effective balance between model accuracy and compu-
tational efficiency, as adding more trees beyond this point typically
yields diminishing performance improvements. The parameter
random_state = 42 is applied to ensure the reproducibility of
results across different runs. Other hyperparameters, including
max_depth, min_samples_split, and min_samples_leaf, are re-
tained at their default settings, allowing the model to adjust
dynamically to the dataset’s characteristics. The chosen configura-
tion is evaluated using 10-fold stratified cross-validation, which
confirms stable and reliable model performance without the need
for extensive hyperparameter optimization.

3). COMPARISON OF SVM AND RF CLASSIFICATION PERFOR-
MANCE. As shown in Fig. 9, RF outperformed SVM, achieving
98.89% mean accuracy, low variability (std. dev= 0.75%), and
high F1-scores (0.985–0.995), making it the more robust and
reliable model.

Beyond the comparison between SVM and RF in this study,
other ensemble methods, such as LightGBM, modified KNN, and
decision trees, can be explored in future work. While boosting-
based models often achieve slightly higher accuracy, they remain

more sensitive to hyperparameter tuning and demand greater
computational resources. In contrast, RF offers a balanced
trade-off between accuracy, stability, and interpretability, making
it particularly well suited for policy-oriented analyses. Conse-
quently, its selection in this framework is methodologically justi-
fied, with boosting-based ensembles proposed for subsequent
evaluation.

V. CONCLUSION
This study developed a multistage ML framework to analyze food
commodity price dynamics and supply chain stability in Aceh,
Indonesia. By combining ridge regression, SAW-K-means cluster-
ing, and RF classification, the framework provided a comprehen-
sive approach to forecasting prices, identifying regional
vulnerabilities, and classifying supply chain stability. Ridge regres-
sion effectively forecasted commodity prices for 2025–2028,
addressed multicollinearity challenges, and captured trends across
both staple and high-value commodities. While volatility was more
evident in perishable and high-demand products, staple commodi-
ties demonstrated greater predictability.

In the clustering stage, standard K-means grouped districts
into Food Secure, Food Vulnerable, and Food Insecure catego-
ries; however, its sensitivity to centroid initialization limited
clustering stability. The SAW-K-means hybrid addressed this
limitation by producing more balanced clusters that aligned better
with official food vulnerability indicators, thereby improving
interpretability for policymakers. For the classification stage,
the SVM with an RBF kernel achieved 94.59% accuracy but
required careful hyperparameter tuning, whereas the sigmoid
kernel underperformed. The RF model achieved the highest
performance, with a mean accuracy of 98.89%, low variance
across folds (std. dev = 0.75%), and F1-scores between 0.985 and
0.995, confirming its robustness as a reliable classifier for food
supply chain monitoring.

Overall, the framework underscored the value of integrating
regression, clustering, and ensemble-based classification for the
management of regional food systems. It provided policymakers
with a decision-support capability to anticipate price fluctuations,
prioritize interventions, and design targeted food security strate-
gies. However, the study remained limited by its dataset, which
covered only Aceh Province and therefore restricted the

Table XV. Classification report of random forest classifier

Metric/class Adequate Deficit Surplus Accuracy/fold accuracies

Precision 0.9948 0.9886 0.9835 Fold 1: 99.13%

Recall 0.9948 0.9808 0.9913 Fold 2: 97.97%

F1-score 0.9948 0.9847 0.9874 Fold 3: 98.55%

Support 1145 1145 1145 Fold 4: 99.13%

Macro avg 0.9890 0.9889 0.9889 Fold 5: 98.84%

Weighted avg 0.9890 0.9889 0.9889 Fold 6: 99.71%

Overall accuracy 0.9889 Fold 7: 99.42%

Fold 8: 97.38%

Fold 9: 100.00%

Fold 10: 98.83%

Mean accuracy: 98.89%

Std. dev: 0.75%

Fig. 9. Comparative accuracy of SVM and random forest models in
classifying regional food supply chain stability.
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generalizability of the findings to broader contexts. Although the
framework was developed and validated using food system data
from Aceh Province, its modular structure enabled adaptation to
other datasets and geographical regions. The ridge regression com-
ponent could be retrainedwith local commodity price data to forecast
market dynamics in new locations. The SAW-K-means clustering
procedure could be recalibrated by redefining vulnerability indica-
tors based on regional priorities. In the classification stage, both
SVM and RF models could be applied to different commodity types
or supply chain environments by relabeling classes and re-optimiz-
ing hyperparameters through cross-validation. The proposed frame-
work was thus transferable and adaptive, allowing implementation
across provinces, countries, or datasets with similar structural char-
acteristics. Future studies should extend the framework to multire-
gional datasets, explore hybrid ensemble classifiers, and incorporate
more advanced temporal forecasting techniques to improve scalabil-
ity and policy relevance.

ACKNOWLEDGMENTS

We gratefully acknowledge the support of the Ministry of Higher Educa-
tion, Science, and Technology of the Republic of Indonesia (Kementerian
Pendidikan Tinggi, Sains, dan Teknologi) through the 2025 Regular
Fundamental Research Grant (Grant No. 134/C3/DT.05.00/PL/2025).

CONFLICT OF INTEREST STATEMENT
The author(s) declare that there are no conflicts of interest regarding
the research, authorship, or publication of this article.

REFERENCES

[1] O. Shebanina, A. Poltorak, and D. Chorniy, “Global food security:
Challenges in achieving the Sustainable Development Goals,” Ukr.
Black Sea Reg. Agrar. Sci., vol. 28, no. 4, pp. 9–20, 2024, DOI:
https://doi.org/10.56407/bs.agrarian/4.2024.09.

[2] S. A. Mekonnen, D. D. Jalata, and H. Onyeaka, “Building resilience
in sub-saharan Africa’s food systems: Diversification, traceability,
capacity building and technology for overcoming challenges,” Food
Energy Secur., vol. 13, no. 4, p. e563, 2024, DOI: https://doi.org/10.
1002/fes3.563.

[3] M. G. Hanna et al., “Future of artificial intelligence (AI)-machine
learning (ML) trends in pathology and medicine,” Mod. Pathol., vol.
38, no. 4, p. 100705, 2025, DOI: https://doi.org/10.1016/j.modpat.
2025.100705.

[4] I. A. Juliannisa et al., “Regional vulnerability to food insecurity: The
case of Indonesia,” Sustainability, vol. 17, no. 11, pp. 1–20, 2025,
DOI: https://doi.org/10.3390/su17114800.

[5] S. L. Venna and A. Romulo, “Role of agriculture on rural household
food security: A systematic review from Indonesia,” IOP Conf. Ser.:
Earth Environ. Sci., vol. 1324, no. 1, p. 012132, Apr. 2024, DOI:
https://doi.org/10.1088/1755-1315/1324/1/012132.

[6] A. Q. Olufemi-Phillips et al., “Global trade dynamics’ impact on food
pricing and supply chain resilience: A quantitative model,” World J.
Adv. Res. Rev., vol. 24, no. 2, pp. 492–519, 2024, DOI: https://doi.
org/10.30574/wjarr.2024.24.2.3350.

[7] A. Subedi et al., “Leveraging machine learning for sustainable solid
waste management: A global perspective,” Sustain. Futures, vol. 10,
p. 101098, 2025, DOI: https://doi.org/10.1016/j.sftr.2025.101098.

[8] M. Sakib, S. Mustajab, and M. Alam, “Ensemble deep learning
techniques for time series analysis: A comprehensive review, appli-
cations, open issues, challenges, and future directions,” Cluster
Comput., vol. 28, no. 1, p. 73, 2025, DOI: https://doi.org/10.1007/
s10586-024-04684-0.

[9] M. C. Camur, S. K. Ravi, and S. Saleh, “Enhancing supply chain
resilience: A machine learning approach for predicting
product availability dates under disruption,” Expert Syst. Appl.,
vol. 247, p. 123226, 2024, DOI: https://doi.org/10.1016/j.eswa.
2024.123226.

[10] M. Sari et al., “Various optimized machine learning techniques to
predict agricultural commodity prices,” Neural Comput. Appl.,
vol. 36, no. 19, pp. 11439–11459, 2024, DOI: https://doi.org/10.
1007/s00521-024-09679-x.

[11] A. H. Ekeh et al., “Leveraging machine learning for environmental
policy innovation: Advances in data analytics to address urban and
ecological challenges,” Gulf J. Adv. Bus. Res., vol. 3, no. 2, pp. 456–
482, 2025, DOI: https://doi.org/10.51594/gjabr.v3i2.92.

[12] H. Al Azies, “AI-based models for identifying underdeveloped
villages in Indonesia’s rural development,” J. Indones. Sustain.
Dev. Plan., vol. 5, no. 3, pp. 192–202, 2024, DOI: https://doi.org/
10.46456/jisdep.v5i3.611.

[13] S. I. S. Mohammad et al., “Impact of crude oil price volatility on
procurement and inventory strategies in the Middle East,” Int. J.
Energy Econ. Policy, vol. 15, pp. 715–727, 2025, DOI: https://doi.
org/10.32479/ijeep.18950.

[14] Z. Loukil, “A hybrid approach to intelligent prediction of medical
conditions: A framework for advancing medical diagnostics through
novel hybrid deep learning models DenCeption and HyBoost for
enhanced feature extraction and predictive accuracy in medical image
analysis,” Ph.D. dissertation, Univ. of Gloucestershire, 2024, DOI:
https://doi.org/10.46289/8XU8FE24.

[15] C. O. Igberi et al., “Comparative analysis of the sustainable dimen-
sions of food security with COVID-19 and climate change: A case
study,” Labour, vol. 110, p. 22, 2022, DOI: https://doi.org/10.21833/
ijaas.2022.06.002.

[16] M. O. Alabi and O. Ngwenyama, “Food security and disruptions of
the global food supply chains during COVID-19: Building smarter
food supply chains for post COVID-19 era,” Br. Food J., vol. 125,
no. 1, pp. 167–185, 2023, DOI: https://doi.org/10.1108/BFJ-03-
2021-0333.

[17] M. W. Barbosa, “Uncovering research streams on agri-food supply
chainmanagement: A bibliometric study,”Global Food Secur., vol. 28,
p. 100517, 2021, DOI: https://doi.org/10.1016/j.gfs.2021.100517.

[18] E. Yontar, “Critical success factor analysis of blockchain technology
in agri-food supply chain management: A circular economy perspec-
tive,” J. Environ. Manage., vol. 330, p. 117173, 2023, DOI: https://
doi.org/10.1016/j.jenvman.2022.117173.

[19] A. S. Toromade et al., “Urban farming and food supply: A compara-
tive review of USA and African cities,” Int. J. Adv. Econ., vol. 6,
no. 7, pp. 275–287, 2024, DOI: https://doi.org/10.51594/ijae.v6i7.
1304.

[20] K. Li, J. Y. Lee, and A. Gharehgozli, “Blockchain in food supply
chains: A literature review and synthesis analysis of platforms,
benefits and challenges,” Int. J. Prod. Res., vol. 61, no. 11,
pp. 3527–3546, 2023, DOI: https://doi.org/10.1080/00207543.
2021.1970849.

[21] S. A. Bhat et al., “Agriculture-food supply chain management based
on blockchain and IoT: A narrative on enterprise blockchain inter-
operability,” Agriculture, vol. 12, no. 1, p. 40, 2021, DOI: https://doi.
org/10.3390/agriculture12010040.

12 Novia Hasdyna et al.

(Ahead of Print)

https://doi.org/10.56407/bs.agrarian/4.2024.09
https://doi.org/10.1002/fes3.563
https://doi.org/10.1002/fes3.563
https://doi.org/10.1016/j.modpat.2025.100705
https://doi.org/10.1016/j.modpat.2025.100705
https://doi.org/10.3390/su17114800
https://doi.org/10.1088/1755-1315/1324/1/012132
https://doi.org/10.30574/wjarr.2024.24.2.3350
https://doi.org/10.30574/wjarr.2024.24.2.3350
https://doi.org/10.1016/j.sftr.2025.101098
https://doi.org/10.1007/s10586-024-04684-0
https://doi.org/10.1007/s10586-024-04684-0
https://doi.org/10.1016/j.eswa.2024.123226
https://doi.org/10.1016/j.eswa.2024.123226
https://doi.org/10.1007/s00521-024-09679-x
https://doi.org/10.1007/s00521-024-09679-x
https://doi.org/10.51594/gjabr.v3i2.92
https://doi.org/10.46456/jisdep.v5i3.611
https://doi.org/10.46456/jisdep.v5i3.611
https://doi.org/10.32479/ijeep.18950
https://doi.org/10.32479/ijeep.18950
https://doi.org/10.46289/8XU8FE24
https://doi.org/10.21833/ijaas.2022.06.002
https://doi.org/10.21833/ijaas.2022.06.002
https://doi.org/10.1108/BFJ-03-2021-0333
https://doi.org/10.1108/BFJ-03-2021-0333
https://doi.org/10.1016/j.gfs.2021.100517
https://doi.org/10.1016/j.jenvman.2022.117173
https://doi.org/10.1016/j.jenvman.2022.117173
https://doi.org/10.51594/ijae.v6i7.1304
https://doi.org/10.51594/ijae.v6i7.1304
https://doi.org/10.1080/00207543.2021.1970849
https://doi.org/10.1080/00207543.2021.1970849
https://doi.org/10.3390/agriculture12010040
https://doi.org/10.3390/agriculture12010040


[22] Y. Kayikci, D. Durak Usar, and B. L. Aylak, “Using blockchain
technology to drive operational excellence in perishable food supply
chains during outbreaks,” Int. J. Logist Manage., vol. 33, no. 3,
pp. 836–876, 2022, DOI: https://doi.org/10.1108/IJLM-01-2021-
0027.

[23] B. Foroughi et al., “Determinants of continuance intention to use food
delivery apps: Findings from PLS and fsQCA,” Int. J. Contemp
Hospitality Manage., vol. 36, no. 4, pp. 1235–1261, 2024, DOI:
https://doi.org/10.1108/IJCHM-10-2022-1209.

[24] S. Nosratabadi et al., “Prediction of food production using machine
learning algorithms of multilayer perceptron and ANFIS,” arXiv
preprint, vol. 11, no. 5, pp. 1–13, arXiv:2104.14286, 2021, doi:
https://doi.org/10.48550/arXiv.2104.14286.

[25] Z. Wang et al., “Multi-objective optimization of rectangular cooling
channel design using Design of Experiments (DOE),” Appl. Therm.
Eng., vol. 242, p. 122507, 2024.

[26] H. Huang et al., “Stacking and ridge regression-based spectral
ensemble preprocessing method and its application in near-infrared

spectral analysis,” Talanta, vol. 276, p. 126242, 2024, DOI: https://
doi.org/10.1016/j.talanta.2024.126242.

[27] J. W. Zhou, J. L. Chen, and H. B. Li, “An optimized fuzzy K-means
clustering method for automated rock discontinuities extraction from
point clouds,” Int. J. Rock Mech. Min. Sci., vol. 173, p. 105627, 2024,
DOI: https://doi.org/10.1016/j.ijrmms.2023.105627.

[28] V. Grybaitė and A. Burinskienė, “Assessment of circular economy
development in the EU countries based on SAW method,” Sustain-
ability, vol. 16, no. 21, p. 9582, 2024, DOI: https://doi.org/10.3390/
su16219582.

[29] N. Hasdyna and R. K. Dinata, “A hybrid optimization of supervised
learning models using information gain-based feature selection,” Int.
J. Comput., vol. 24, no. 1, pp. 178–189, 2025, DOI: https://doi.org/
10.47839/ijc.24.1.3890.
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