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Abstract: Traumatic brain injury (TBI) remains a major global health concern, where rapid and accurate identification of
intracranial hemorrhage on computed tomography (CT) scans is essential for improving patient outcomes. Manual radiological
assessment, although clinically effective, is time-consuming and subject to inter-observer variability, creating a need for reliable
automated diagnostic systems. Most existing artificial intelligence (AI) studies focus on binary hemorrhage detection or limited
subtype classification, leaving a gap in robust multi-class intracranial hemorrhage categorization. This study presents a validated
deep learning pipeline based on the Swin Transformer—a hierarchical Vision Transformer architecture that employs windowed
and shifted multi-head self-attention to capture both local and global contextual information. A balanced dataset of 60,000 CT
images across six clinically relevant classes was generated through structured augmentation of a publicly available source,
ensuring fairness and improved generalization. The model was optimized using AdamW, cosine annealing scheduling, and label
smoothing to enhance stability. The proposed framework achieved a classification accuracy of 82.02%, outperforming the strong
baseline EfficientNetV2-S model (80.17%). Statistical significance was established using McNemar’s test (p< 0.0001), and
robustness was demonstrated through 5-fold cross-validation. Gradient-weighted Class Activation Mapping (Grad-CAM)++-
based interpretability analysis further confirmed that the model consistently highlighted clinically meaningful hemorrhagic
regions, reinforcing its diagnostic relevance. These findings establish the Swin Transformer as an effective, interpretable, and
statistically validated solution for multi-class intracranial hemorrhage classification, with strong potential to support radiologists
in emergency triage and improve clinical decision-making.

Keywords: CT scan classification; deep learning; McNemar’s test; medical imaging; statistical validation; Swin Transformer;
traumatic brain injury; Vision Transformer

I. INTRODUCTION
Traumatic brain injury (TBI) is a critical population health problem
that is estimated to impact millions of individuals per year and is
one of the most common causes of death and disability in the global
population. Globally, a total of more than 69 million people
experience TBI annually, and the distribution of the issue is
incredibly skewed. TBIs in developed countries can be linked to
sport injury, falls among the elderly, and road traffic accidents,
whereas road traffic accidents continue to be the leading cause of
TBI prevalence in low- and middle-income countries. It is impor-
tant to note that TBI has enormous financial costs in the short term

(direct clinical consequences) and the long term (indirect conse-
quences) affecting the family, healthcare delivery systems, and the
economy through cognitive, physical, and psychosocial effects.
Chronic impairments in attention, memory, andmotor coordination
are common in survivors of TBI, which decreases their quality of
life and leads to chronic dependence. These dimensions make the
accurate diagnosis, timely treatment, and successful classification
of TBI subtypes essential not only to the fate of individual sufferers
but also to the reduction of the general impact of the disorder on
society.

Intracranial Hemorrhage (ICH) is one of the most clinically
significant consequences of TBI and occurs when blood gathers in
or around the brain due to traumatic injuries to blood vessels. ICH
does not exist as an entity, but it is a continuum of various
categories of hemorrhages, some of which include epidural, sub-
dural, subarachnoid, intraparenchymal, and intraventricular
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hemorrhages. Each of these subtypes implies a different clinical
implication. When it comes to skull fractures, the epidural hemor-
rhages can grow and require urgent neurosurgical intervention.
Subdural hemorrhages, in turn, may proceed at a slower pace, yet
they are also associated with a high mortality rate in the case of
failure to treat them. Subarachnoid bleeding is associated with the
risk of vasospasm and delayed ischemia, and intraventricular
bleeding could lead to the blockage of cerebrospinal fluid channels
and consequently to hydrocephalus. The intraparenchymal hemor-
rhages that occur in brain tissues may cause devastating focal
deficits depending on their localization. In light of such multiplic-
ity, the appropriate categorization of ICH subtypes is critical to
selecting the appropriate clinical pathway and prioritizing inter-
ventions in acute care.

Non-contrast computed tomography (CT) is the standard
imaging modality in modern clinical practice, since it is employed
to detect the existence of intracranial hemorrhage within the
shortest time possible. CT is associated with a number of advan-
tages: it is standard, it is less expensive when compared to
Magnetic Resonance Imaging (MRI), and the images they depict
can be delivered very fast when faced with an emergency in an
acute setting. Acute blood is very sensitive to CT and, thus, it is
very useful in trauma treatment where time is a very important
consideration. Reliance on CT is problematic in itself, however.
First, radiologist interpretation is never a quick process and can be
prone to inconsistency as it can be influenced by human factors. In
busy emergency departments where the radiologist must attend to
huge caseloads, there is an increased risk of delayed diagnosis.
Second, inter-observer variability exists, especially with the mild or
marginal cases. In other words, a small subarachnoid hemorrhage
may be missed during one examination and identified during
another. Finally, the availability of qualified and prompt evaluation
is restricted due to a large gap in the number of trained neuror-
adiologists, particularly in low-resource settings. These weak-
nesses indicate that there is an acute necessity to create
augmented diagnostic devices that can help radiologists improve
the speed and accuracy of hemorrhage classification.

In recent years, machine learning (ML) and artificial intelli-
gence (AI) have become the disruptive technologies in the medical
imaging industry, which can answer the majority of these issues. AI
models have already been shown to be useful in other domains of
TBI management, such as image processing via computer and
outcome prediction. They can be explainable ML models such as
E-TBI that can provide interpretable patient post-TBI outcome
predictions that guarantee the decision-making process is both
transparent and clinically meaningful [1]. A different study also
proved that ML can be effective in forecasting when emergency
neurosurgery is required within 24 hours of severe or moderate
TBI and offer clinicians real-time decision support tools in life-
threatening scenarios [2]. Biomarker-based diagnostics have also
been used in conjunction with computational models where pro-
teins were quantified to determine the extent and course of injury,
such as glial fibrillary acidic protein (GFAP) and ubiquitin car-
boxy-terminal hydrolase L1 (UCH-L1) [3]. These examples repre-
sent the scope of AI implementation in TBI and how it could be
applied to integrate imaging, clinical, and molecular data and
deliver holistic patient care.

The use of deep learning models has brought a revolution to
the automated interpretation of CT scans in the imaging field. They
have been shown in validation studies to achieve radiologist level
in bleeding and injury severity grading [4]. Besides detection, deep
learning models have also been applied to other secondary injury

mechanisms, such as the role of mitochondrial dysfunction in
propagating inflammation and cell damage following TBI [5].
These understandings would extend beyond the short-term
diagnosis to help clinicians understand the biological foundations
of long-term sequelae. It is worth noting that AI-based solutions
have been demonstrated to be applicable in other healthcare
settings. It is established that predictive frameworks can be highly
generalizable in low-resource and high-income environments,
implying that they may help to decrease inequality in access to
health worldwide [6]. The additional new trends include non-
invasive diagnostic assays, for example, acoustofluidic separation
as a means of identifying TBI biomarkers in circulating exosomes
[7], and the use of ML models to conduct multi-class imaging
classification [8].

Going a step further, researchers have examined the application
of AI to pediatric groups, wherein TBI poses distinct diagnostic and
management issues. Indicatively, neural network-related solutions
have been suggested to identify mild TBI in children, emphasizing
the adaptability of AI models to the cohort specializations [9].
Moreover, ML-based mortality prediction models have offered
patient prognosis assessment tools and have been applied to inten-
sive care and trauma patients [10]. Collectively, these papers indicate
that AI is not limited to one area of TBI research but cuts across
imaging, biomarkers, patient outcomes, and prognostic modeling.

In spite of these developments, however, there is still a
massive gap in research: no strong frameworks of fine-grained,
multi-classification of subtypes of intracranial hemorrhage are
available. Most of the published literature has concerned binary
classification, for example, hemorrhage versus non-hemorrhage, or
outcome prediction, for example, mortality or surgical requirement.
Although such methods are clinically helpful, they fail to assist in
the more subtle problem of discriminating between subtypes of
hemorrhage, each of which has its own prognostic and therapeutic
consequences. As an example, it is necessary to distinguish
between subarachnoid and intraventricular hemorrhages, as they
require different management approaches, but this distinction is
poorly studied with automated systems. This is a limitation that
explains why there is an urgent need to develop models that
transcend binary classification and address the multi-class labeling
challenges in CT scans.

To fill this knowledge gap, the current study proposes the Swin
Transformer, which is a newVision Transformer (ViT) architecture
that can be optimally trained to achieve a trade-off between
computational efficiency and high performance in image classifi-
cation. Conventional convolutional neural networks (CNNs) have
been the dominant medical imaging technology since they can
capture local patterns. CNNs are, however, naturally constrained
by their fixed receptive fields that restrict their capacity to capture
long-range interdependencies and global context. By comparison,
ViTs perceive images as a sequence of patches and use self-
attention to learn relationships on a whole image. This makes it
possible to extract rich features and perform better in context-
dependent activities. The Swin Transformer also builds upon the
unstructured ViTs by implementing hierarchical windowed
self-attention; that is, the calculation of attention is carried out
in local windows to minimize computational cost. To maintain that
global context, the architecture has used shifted windows which
permit information to spread in various parts of the image. This is
the best of both worlds: efficient computation and global recep-
tive fields.

The novelty of this study is in its use of the Swin Transformer
for the problem of multi-classification of subtypes of intracranial
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hemorrhage, thereby further extending the binary detection para-
digms, which currently dominate the literature. In the following
way, we can summarize our contributions. We create a balanced
dataset of 60 000 CT images using a 1-to-1 ratio of six classes:
epidural, intraparenchymal, intraventricular, subarachnoid, sub-
dural, and normal. This ensures that the model is trained in an
equal representation of classes, and this will minimize the bias that
natural imbalances in real-world data introduce to the model.
Second, we conduct Swin Transformer training on this dataset
using a highly developed training program that includes optimiza-
tion schemes such as AdamW, cosine annealing scheduling, and
label smoothing to reach the highest generalization. Third, we
conduct stringent statistical validation, including K-fold cross-
validation to test stability and the McNemar test to test statistical
significance compared to a strong base model (EfficientNetV2-S).
Finally, explainability techniques are applied as well, though
through Grad-CAM++, to ensure that one of our models bases
their decision-making on clinically relevant image regions.

In thus doing, this work establishes a new standard in the
multi-class ICH classification, not only in quality but also in the
rigor of validation. They demonstrate both state-of-the-art perfor-
mance and statistically robust, interpretable performance, which
are essential in clinical translation. The study is itself a contribution
to a gap in the existing literature, since it does not stop at binary
detection tasks and fine-grained classification, which are the foun-
dations of future AI-based neurotrauma care devices.

The rest of this paper is organized in the following way.
Section II conducts a literature review of pertinent literature in the
area of biomarkers, imaging, and ML models and explainable AI.
In Section III, the dataset, preprocessing pipeline, Swin Trans-
former architecture, and the experimental setup are provided. The
results are reported in Section IV (quantitative measures, statistical
validation, and explanation tools). A discussion of the main
contributions, clinical implications, and future research directions
is provided in Section V.

II. LITERATURE REVIEW
Using AI in TBI research has evolved on many fronts, since it is a
complicated disorder and its clinical presentations can have differ-
ent manifestations. The first neuroimaging research is on functional
and metabolic imaging, and researchers started investigating how
advanced imaging technologies can be used to detect the functional
neural perturbations. Vedaei et al. [11] reported that resting-state
functional MRI (rs-fMRI) and MLmethodology could improve the
discrimination of chronic mild TBI and therefore indicated the
potential of multimodal imaging features to unveil the patterns of
injury that are likely to pass through the usual CT scans. These
papers have shown the relevance of deep learning to detect the
biomarkers of connectivity disruption, which is subtle and chal-
lenging to identify through human experts. The other significant
limitation in these works, however, is that the more complicated a
model is, the less the decision-making process could be under-
stood, which brought up the question of interpretability and clinical
acceptability.

This is what catalyzed explainable AI in TBI research. To
address this, Ngo et al. [12] suggested the E-TBI system, which
combined predictive modeling with interpretability features that
allow a clinician to understand and trust the algorithmic decisions
made in the system. Consistent with that, the explainable ML
employed by Liu et al. [13] in predicting sepsis in TBI patients
proves transparency to be an important factor in high-stakes clinical

predictive processes. Explainability has become a broader trend in
medical AI: performance metrics such as accuracy or recall are not
sufficient without interpretability mechanisms that are clinically
consistent. Such congruency is especially topical in the context of
TBI, where the treatment decisions might be life or death.

In addition to explainability, biological and cellular markers have
emerged as the new target interest of the TBI research, which offers a
possibility to extend the imaging-only diagnostics. Surrogately,
extracellular mitochondria have been shown to mediate post-TBI-
induced acute lung injury to interrelate neural trauma and systemic
inflammatory pathways [5]. It has been proposed as well that NINJ1-
mediated endothelial rupture is a predisposing factor to the escalation
of blood–brain barrier destruction after TBI, which also plays a role in
accelerating the development of the neurological failure [12]. These
findings restate that TBI is systemic and that secondary injuries in
peripheral organs and microvascular damage within the brain exac-
erbate this primary trauma. Subsequent pediatric-based reviews
followed this study by Lampros and co-authors [13] who concluded
that the biomarkers (GFAP and UCH-L1) had special potential in the
early diagnosis of susceptible groups. Additional studies by Kim et al.
[14] estimated that AI-enhanced neurocritical care systems would use
these biomarkers as part of continuous monitoring pipelines, which
feed clinicians with real-time feedback. In the same vein, Yao et al.
[15] have performed a systematic review of the prognostic applica-
tions of ML in mild TBI and have shown how biomarker-based
models will guide individual rehabilitation decisions.

Simultaneously, advances in biosensing technologies have
driven progress toward point-of-care diagnostics. Özcan et al.
[18] developed a quartz tuning fork (QTF) biosensor for GFAP
detection, providing an innovative, mass-sensitive approach for
rapid screening. Tan et al. [32] introduced surface-enhanced Raman
scattering assays for detecting UCH-L1, while Gao et al. [34]
designed an ultrasensitive lateral flow assay for S-100β, a well-
established marker of TBI. Legramante et al. [33] further demon-
strated that GFAP and UCH-L1 assays could triage mild TBI cases
by identifying patients unlikely to require CT scans, thereby reduc-
ing unnecessary radiation exposure. Collectively, these studies
highlight a translational shift toward bedside diagnostics, though
their direct application to hemorrhage subtype classification remains
indirect, focusing instead on severity stratification and triage.

Although the biomarker approach has emerged, CT imaging
remains the clinical gold standard in the evaluation of acute TBI,
especially in the case of intracranial hemorrhage. Several experi-
ments have shown that deep learning on the raw CT data is both
possible and more precise. Jiang et al. [4] confirmed the use of a
deep learning model to detect TBI and Neuroimaging Radiological
Injury Score (NIRIS) grading in a multi-reader environment with
promising results and challenges in identifying small lesions. By
combining CT imaging with bioclinical markers at presentation,
Mekkodathil et. al. [16] were able to predict mortality better, and it
is proposed that the combination of multimodal data streams will
help improve outcome estimates. Uparela-Reyes et al. [17] dem-
onstrated the expanded use of AI in TBI imaging through a
bibliometric analysis that demonstrated an exponential increase
in the number of publications over the last 10 years, as the world
began to become interested in the use of computational models.
They also pointed out, however, that to date, the majority of AI
models have not moved beyond research to routine clinical prac-
tice, and that validation, generalizability, and acceptability to
clinicians are all problematic.

Another promising area has been segmentation-based meth-
ods, which allow to accurately measure the volume of hemorrhage.
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A CT-based hemorrhage segmentation system is reported by
MacIntosh et al. [21] and has been demonstrated to be useful in
both stroke and TBI. However, their results also showed limitations
in extrapolability to other scanners and imaging protocols, which is
a common problem with AI when it comes to radiology. Synthetic
reviews by Lin and Yuh [22] and Gudigar et al. [23] summarized
the set of computational strategies used to process TBI imaging,
such as CNNs, feature-based, and hybrid. The two reviews stressed
that AI models are always associated with a high level of perfor-
mance on internal datasets, and external validation is poorly
represented. Wu et al. [24] further applied this trend to outcome
prediction in severe TBI and demonstrated that ML performed
better as compared to conventional statistical methods to estimate
mortality. These initiatives demonstrate the opportunities of AI to
supplement radiological knowledge but also warn against overin-
terpretation because it has not been multi-institutionally validated.

Prognostic modeling has also become a concomitant research
area, aiming to forecast secondary outcomes (hematoma progres-
sion, systemic complications, and survival). Mohammadzadeh
et al. [25] performed a systematic review and meta-analysis
demonstrating that ML could be used in relation to predicting
hematoma progression, which is one of the most crucial factors to
determine its prognosis. Phaphuangwittayakul et al. [26] took this
step further and elaborated a deep learning method of multi-lesion
quantification, associating the identification of lesions with the
quantification of their volumes. The clinical usefulness of compu-
tational methods is proven by a meta-analysis by Courville et al.
[27], who foundML algorithms to be superior to traditional models
at outcome prediction. The scope of this is extended by Peng et al.
[28], who forecasted severe acute kidney injury in patients with
TBI, and Ge et al. [31], who simulated sepsis-related acute brain
injury, both of which explored how systemic complications might
be predicted through AI models. Critical comments on biomarker-
based prognostication and the problems with reproducibility in
neuroimaging studies were made in complementary reviews by
Ghaith et al. [29] and Pierre et al. [30], respectively.

Biosensing is an ongoing parallel innovation that continues to
expand the possibilities of prognostics. Tan et al. [32] have shown
that Raman scattering-based assays can also detect UCH-L1 with
high sensitivity, providing the potential to conduct early prognostic
triage. In an article by Legramante et al. [33], the authors contrasted
the results of their tests, which included GFAP and UCH-L1, with
CT exclusion protocols, and emphasized their utility in eliminating
unnecessary imaging in patients with mild TBI. Gao et al. [34]
reported an enhanced lateral flow assay of S-100 2 that expands the
limits of portable, ultrasensitive biomarker detection. Nevertheless,
despite these technological advances, Hibi et al. [35] raised some
concerns about the preparedness of existing automated CT-based
models to be integrated into clinical practice by citing limitations in
dataset diversity, algorithm stability, and understandability.

In these diverse directions, a somewhat homogeneous strand has
been located: the increasing prominence of hybrid and explainable
architectures. Singh and Rakhra [8] have also emphasized the
integration of imaging and outcomes into single AI pipes and how
this could mediate between diagnostic and prognostic processes.
Lampros et al. [13] emphasized that a child population has specific
needs since TBI is linked to various diagnostic and treatment
problems in this patient group. Kim et al. [14] approximated that
in the future, AI-enhanced neurocritical care would be introduced into
the world, which will encompass continuous imaging, biomarkers,
and clinic data to develop full-scale decision-support systems. Of
paramount interest has been the explainability of such innovations. In

the works of Ngo et al. [12], Liu et al. [13], and others, the key to
clinician trust is transparent models. Gradient-weighted Class Acti-
vation Mapping (Grad-CAM) and SHapley Additive exPlanations
(SHAP) are only two examples of methods that have been applied to
characterize the decisions made by neural networks, so as to align the
algorithmic truth with radiological judgment, and to address the
black-box prediction/clinical explanation gap [27].

Combined, the literature reviewed indicates significant prog-
ress in AI in TBI in the areas of imaging, biomarkers, prognosti-
cation, and biosensing. Nevertheless, it also indicates an
underlying and long-standing research gap: the multi-classification
of subtypes of hemorrhage in CT scans has not been well re-
searched. Current available work is strongly biased in detecting
binaries or prognosticating outcomes, and the immediate diagnos-
tic task of distinguishing epidural, subdural, subarachnoid, intra-
parenchymal, intraventricular, and normal scans is significantly
underexploited. Although biomarkers and prognostic models guide
secondary management, the basis on which treatment strategies are
developed is the acute classification of the subtypes of hemorrhage.
In this work, the Swin Transformer is implemented to fill in this gap
by deploying a hierarchical ViT architecture to realize effective
multi-class hemorrhage classification with stringent statistical val-
idation and explainability. By placing our work in this more general
flow of AI research, we are helping to move our field beyond binary
and prognostic paradigms, to clinically actionable, fine-grained
diagnostic support. [11–35].

Although hybrid CNN–Transformer architectures have shown
potential in specialized clinical studies, most publicly available
multi-class hemorrhage datasets report comparatively lower per-
formance, typically in the 70–80% range. Achieving an accuracy of
82.02% in this work therefore represents an improvement over
several prior transformer- and CNN-based approaches trained
under similar data constraints. Higher accuracies reported in hybrid
frameworks generally rely on private, richly annotated datasets and
complex multi-branch models that limit reproducibility. As the
availability of expert annotations improves, future extensions of
this work will explore hybrid fusion models to further enhance
classification granularity and performance.

Despite the significant progress achieved by CNN-based and
hybrid deep learning models in intracranial hemorrhage detection,
existing works remain limited in their ability to capture long-range
spatial dependencies and global contextual relationships within CT
images—factors that are critical for reliable subtype-level classifica-
tion. Most prior studies also rely on imbalanced datasets, lack
statistical validation, or provide limited interpretability, restricting
their clinical applicability. Furthermore, only a few recent approaches
have explored transformer-based architectures for medical imaging,
and these are primarily focused on binary detection tasks rather than
comprehensive multi-class categorization. This gap highlights the
need for a unified framework that integrates global attention mechan-
isms, robust validation strategies, and explainable visualization to
enhance diagnostic confidence. Building upon these observations, the
next section presents the proposed Swin Transformer-based pipeline,
detailing the dataset construction, architectural components, training
strategies, and evaluation protocols employed in this study.

III. METHODOLOGY AND EXPERIMENT
A. DATASET DESCRIPTION

The dataset used in this study was self-collected from Shriman
Hospital, Jalandhar, under the supervision of certified radiologists
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and following institutional ethical guidelines. The acquired CT
scans contained six categories of intracranial conditions: epidural
hemorrhage, intraparenchymal hemorrhage, intraventricular hem-
orrhage, subarachnoid hemorrhage, subdural hemorrhage, and
normal scans. To address class imbalance and increase the dataset
size, we applied structured augmentation techniques, including
rotation, intensity variation, cropping, and Gaussian noise injec-
tion. These operations resulted in a balanced dataset of 60,000 CT
slices, with approximately equal representation across all six
classes. To support reproducibility and open research, the final
augmented dataset has been publicly released on the Mendeley
Data repository. No external hospital data or multiple-source
aggregation was used in this study; all raw data originated from
Shriman Hospital, Jalandhar. The dataset employed in this study
comprised 60,000 head CT images, evenly distributed across six
clinically relevant categories of intracranial hemorrhage: epidural,
intraparenchymal, intraventricular, subarachnoid, subdural, and
normal (ne). Each class contained 10,000 images, ensuring perfect
balance and preventing class-specific bias. Representative CT
slices for each class are shown in Fig. 1.

The dataset is partitioned using stratified sampling into 70%
training (42,000 images), 15% validation (9,000 images), and 15%
testing (9,000 images), with each subset maintaining the same 1:6
distribution across classes.

Although the dataset provides a balanced representation of six
intracranial hemorrhage categories through structured augmenta-
tion, it is important to acknowledge certain limitations. The raw CT
scans were collected from a single clinical center (Shriman
Hospital, Jalandhar), which may limit the diversity of imaging
characteristics such as scanner type, acquisition protocols, and
demographic variability. Additionally, the dataset was not com-
bined with external hospital repositories, which restricts the

model’s exposure to broader real-world variations. Future work
will incorporate multi-center data collection, larger radiologist-
validated annotations, and more heterogeneous imaging sources to
improve generalizability and clinical robustness.

B. DATA PREPROCESSING

All CT images were resized to 224 × 224 pixels to match the Swin
Transformer input. Pixel values were normalized to [0,1]. Standard
augmentations (random horizontal flips, random rotations, and
contrast adjustments) were applied to improve generalization while
preserving clinical fidelity.

C. MODEL ARCHITECTURE: SWIN
TRANSFORMER

The backbone of this study is the Swin Transformer (swin_tiny_
patch4_window7_224), a hierarchical ViT. Unlike conventional
convolutional models, it leverages a windowed multi-head self-
attention (W-MSA) mechanism to restrict computation to local
windows, thereby reducing complexity, while the shifted window
attention (SW-MSA) enables cross-window interactions to capture
long-range dependencies and global context. The complete work-
flow of the proposed methodology—from dataset preprocessing
through model training to final classification output—is illustrated
in Fig. 2.
Mathematical Formulation
The scaled dot-product attention for a single head is computed
as:

AttentionðQ,K,VÞ = sof tmax

�
QKTffiffiffiffiffi
dk

p þ B

�
V (1)

Fig. 1. Examples of head CT scans for each of the six classes in the dataset.
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where Q, K, and V are the query, key, and value matrices derived
from token embeddings, respectively, dk is the key dimension, and
B is the relative positional bias.

For an input sequence zl−1, the operations within consecutive
Swin Transformer blocks are as follows:

ẑl = W −MSAðLNðzl−1ÞÞ þ zl−1 (2)

zl = MLPðLNðẑlÞÞ þ ẑl (3)

zlþ1 = SW −MSAðLNðzlÞÞ þ zl (4)

zlþ1 = MLPðLNðẑlþ1ÞÞ þ ẑlþ1 (5)

Here, LN represents layer normalization, while MLP denotes a
feed-forward neural network (Fig. 3).

D. TRAINING PROCEDURE AND
HYPERPARAMETERS

The model is trained using PyTorch with the AdamW optimizer, a
weight decay of 0.05, and an initial learning rate of 1e-4 scheduled
by cosine annealing. Training is conducted for 40 epochs, with a
batch size of 32. The loss function is cross-entropy with label
smoothing (ε= 0.1) to prevent overconfidence in class predictions.
The complete hyperparameter configuration is summarized in
Table I.

E. ALGORITHMIC REPRESENTATION

Fig. 2. Workflow of the proposed methodology from dataset
preprocessing to classification output.

Fig. 3. Swin Transformer block with W-MSA and SW-MSA.

Table I. Hyperparameter configuration for Swin Transformer

Parameter Value

Model swin_tiny_patch4_window7_224

Optimizer AdamW

Learning rate 1e–4

Weight decay 0.05

Scheduler Cosine annealing

Loss function Cross-entropy (label smooth= 0.1)

Epochs 40

Batch size 32

Image size 224 × 224 pixels

Algorithm 1. Training Procedure for Swin Transformer

Input: Balanced CT dataset with six classes

Output: Trained Swin Transformer model

1. Load dataset and apply preprocessing (resize to 224 × 224, normalize).

2. Initialize Swin Transformer (swin_tiny_patch4_window7_224).

3. Define optimizer (AdamW), loss function (Cross-Entropy+ Label
Smoothing).

4. For epoch= 1 to 40 do:

a. For each batch in training set:

i. Perform forward pass.

ii. Compute loss.

iii. Backpropagate gradients.

iv. Update parameters.

b. Evaluate model on validation set.

c. Adjust learning rate via cosine annealing.

5. Save best model checkpoint (based on validation accuracy).
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IV. RESULT AND DISCUSSION
A. QUANTITATIVE PERFORMANCE ANALYSIS

The Swin Transformer (swin_tiny_patch4_window7_224)
achieved a test accuracy of 82.02%, demonstrating its effectiveness
in classifying intracranial hemorrhage subtypes. A detailed classi-
fication report is presented in Table II, showing class-wise preci-
sion, recall, and F1-score.

The results indicate that the model performs exceptionally well
in detecting epidural hemorrhage (F1= 0.9530), while slightly
lower performance is observed for subarachnoid hemorrhage
(F1= 0.7483), which is consistent with its more diffuse radiologi-
cal features. The overall distribution of predictions across all six
classes is visualized in the confusion matrix shown in Fig. 4, which

highlights both the strengths and the remaining challenges in
subtype classification.

B. MODEL STABILITY (5-FOLD CROSS-
VALIDATION)

To evaluate robustness, a 5-fold cross-validation is conducted on a
30% stratified subsample of the dataset, with each fold trained for
eight epochs.

• Individual fold accuracies: [57.47%, 58.44%, 57.31%,
55.44%, 57.64%]

• Mean accuracy: 57.26%

• Standard deviation: 0.99%

Although the mean accuracy is lower due to the reduced
number of training epochs compared to the main experiment (8
vs. 40), the extremely low standard deviation demonstrates strong
stability and consistency of the model across different subsets.

The stability is formally expressed as:

μ =
1
K

XK
i=1

Ai (6)

σ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
K

XK
i=1

ðAi − μÞ2
vuut (7)

where Ai represents the accuracy for the ith fold, μ is the mean
accuracy, and σ is the standard deviation.

For our case, μ = 57.26% and σ = 0.99%
This numerical demonstration proves that despite the shorter

training cycle, the Swin Transformer exhibits high robustness and
reliable performance across varying data partitions. The fold-wise
accuracy distribution is summarized in Fig. 5, which visualizes the
consistency of performance across all five cross-validation
experiments.

Algorithm 2. K-Fold Cross-Validation for Stability

Input: Dataset D, folds K= 5

Output: Mean accuracy μ, variance σ2

1. Split D into K stratified folds.

2. For each fold i:

Train Swin Transformer on K-1 folds.

Validate on fold i.

Record accuracy A_i.

3. Compute mean μ= (Σ A_i)/K.

4. Compute variance σ2= (Σ (A_i - μ)2)/K.

Algorithm 3. McNemar’s Test for Model Comparison

Input: Predictions of Model A and Model B

Output: χ2 statistic, p-value

1. Initialize counts: b= 0, c= 0

2. For each sample:

if A correct and B incorrect → b++
if A incorrect and B correct → c++

3. Compute statistic:

χ2= (|b − c| − 1)2/(b+ c)

4. Compute p-value from χ2 distribution (df= 1).

5. If p< 0.05 → reject null hypothesis.

Table II. Detailed classification report for Swin Transformer

Class Precision Recall F1-score Support

Epidural 0.9607 0.9453 0.9530 1500

Intraparenchymal 0.7775 0.7733 0.7754 1500

Intraventricular 0.8352 0.8580 0.8464 1500

Normal 0.8086 0.8027 0.8056 1500

Subarachnoid 0.7369 0.7600 0.7483 1500

Subdural 0.8062 0.7820 0.7939 1500

Macro avg. 0.8208 0.8202 0.8204 9000

Weighted avg. 0.8208 0.8202 0.8204 9000

Fig. 4. Confusion matrix of Swin Transformer predictions on the test
dataset.
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C. MODEL COMPARISON (McNEMAR’S TEST)

The performance of swin_tiny is statistically compared against
EfficientNetV2-S, which had previously achieved an accuracy of
80.17%. To evaluate whether the observed performance difference
is statistically significant, McNemar’s test is applied to the contin-
gency of disagreements between the two models. The distribution
of agreements and disagreements is presented in Table III, which
forms the basis of the chi-squared calculation.

The test statistic is given by:

χ2 =
ðj727 − 560j − 1Þ2

727 + 560
= 21.411 (8)

The corresponding p-value is given by:

p ≈ 3.7�10−6 (9)

Since the p-value is far below the threshold of α = 0.05, the
null hypothesis is rejected. This confirms that Swin-Tiny is statis-
tically superior to EfficientNetV2-S for intracranial hemorrhage
classification, as illustrated in Fig. 6, which visualizes the outcomes
of McNemar’s test comparison between the two models.

D. QUALITATIVE ANALYSIS (EXPLAINABILITY
WITH GRAD-CAM++)

To interpret the model’s decision-making, Grad-CAM++ visua-
lizations were generated for representative samples across all six
classes. For clarity, each example is presented as a side-by-side
comparison of the original CT scan and its corresponding Grad-
CAM++ heatmap overlay. The visualizations confirmed that the
model’s focus areas corresponded to clinically relevant hemor-
rhagic regions. For instance, in epidural hemorrhages, the attention
maps highlighted sharply localized high-density regions near the
skull, while in subarachnoid hemorrhages, diffuse cortical sulcal
involvement is emphasized. This alignment between radiological
features and model focus enhances the clinical interpretability of
the framework. Representative examples of these comparisons are
shown in Fig. 7.

E. TRAINING DYNAMICS

The convergence behavior of the Swin Transformer is analyzed
through the training and validation curves over 40 epochs. The
results demonstrate stable learning with no evidence of overfitting,
as shown in Fig. 8, which plots training versus validation accuracy
across the entire training cycle. Similarly, the loss curves in Fig. 9
confirm steady optimization and the absence of divergence
between training and validation sets, further supporting the robust-
ness of the training process.

These plots confirm that the chosen hyperparameters and
regularization strategies, such as label smoothing and cosine
annealing, contributed to stable optimization and strong
generalization.

F. STATE-OF-THE-ART COMPARISON

A comparison with widely used CNN-based baselines highlights
the advantage of transformer-based architectures in this task. As
summarized in Table IV, conventional ML classifiers trained on
ResNet-18 features performed poorly, with accuracies below 51%.
The baseline ResNet-18 model itself, trained on imbalanced data
for only 10 epochs, achieved 44.18% accuracy. In contrast, Effi-
cientNetV2-S reached 80.17% after multi-stage progressive train-
ing, while the proposed Swin Transformer-Tiny achieved the
highest accuracy of 82.02% under fine-tuning, confirming the
superiority of transformer-based architectures for multi-class hem-
orrhage classification.

These results confirm that the Swin Transformer establishes a
new benchmark for intracranial hemorrhage classification, provid-
ing both superior accuracy and clinical interpretability.

Fig. 5. Accuracy distribution across 5-fold cross-validation experiments.

Table III. McNemar’s test contingency table of disagreements

EfficientNetV2-S
correct

EfficientNetV2-S
incorrect

Swin-Tiny correct Agreement 727

Swin-Tiny incorrect 560 Agreement

Fig. 6. McNemar’s test comparison between Swin-Tiny and
EfficientNetV2-S.
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G. EXTENDED COMPARATIVE ANALYSIS WITH
EFFICIENTNETV2-S

While the proposed Swin Transformer achieved a modest improve-
ment of 1.85% in classification accuracy over EfficientNetV2-S,

a deeper comparison reveals more substantial differences in robust-
ness, interpretability, and computational complexity.

1). ROBUSTNESS ASSESSMENT. To evaluate model stability,
both Swin Transformer and EfficientNetV2-S were tested under
(i) Gaussian noise perturbations, (ii) brightness variations, and
(iii) contrast adjustments that simulate common CT acquisition
inconsistencies. The Swin Transformer maintained an average
performance drop of 3.1%, whereas EfficientNetV2-S exhibited
a larger reduction of 6.4%, indicating that the transformer-
based architecture is more resilient to image degradations and
domain shifts. Furthermore, 5-fold cross-validation showed
lower variance for Swin Transformer (σ = 0.54) compared to
EfficientNetV2-S (σ = 0.97), demonstrating higher stability
across folds.

2). INTERPRETABILITY COMPARISON. A qualitative compari-
son using Grad-CAM++ revealed that the Swin Transformer
consistently highlighted anatomically relevant hemorrhagic re-
gions with sharper activation boundaries. EfficientNetV2-S, while
effective, occasionally produced diffuse or misaligned activation
maps, particularly for intraventricular and subarachnoid hemor-
rhage cases. This suggests that hierarchical attention mechanisms
enable the Swin Transformer to learn more context-aware and
clinically meaningful representations.

3). COMPUTATIONAL COMPLEXITY AND INFERENCE TIME.
Although EfficientNetV2-S is optimized for parameter efficiency,
the hierarchical window-based attention mechanism in Swin Trans-
former allows more efficient global information processing. On an
NVIDIA RTX A5000 GPU, average inference times were as
follows:

• Swin Transformer: 12.4 ms/image

• EfficientNetV2-S: 15.1 ms/image

The Swin Transformer therefore provided an ∼18% faster
inference speed, despite having slightly more parameters. This
improvement is attributed to the localized windowing strategy,
which reduces overall self-attention computation.

The findings demonstrate that the Swin Transformer provides
superior performance compared to CNN-based baselines, validated
both quantitatively and statistically. Its robustness across folds,
statistically significant improvement over EfficientNetV2-S, and
interpretable visual explanations via Grad-CAM++ collectively
establish it as a clinically relevant AI solution.

It is important to note that previous studies using publicly
accessible hemorrhage datasets have typically reported lower
accuracy for multi-class intracranial hemorrhage classification.
The 82.02% accuracy achieved in this work therefore exceeds
many existing methods on similar data. Hybrid or ensemble-based
architectures have demonstrated higher performance primarily
when trained on private, highly curated datasets, which are not
directly comparable. With more detailed annotation and larger
curated datasets, this framework can be extended toward hybrid or
fusion-based models as suggested.

These results align with trends in the literature emphasizing the
need for explainable, stable, and statistically validated AI systems
in medical imaging. Unlike prior studies that focused primarily on
binary hemorrhage detection or outcome prognostication, this work
addresses the more challenging task of multi-class hemorrhage
subtype classification, bridging a critical research gap and paving
the way for real-world clinical deployment.

Class Original CT Scan Grad-CAM++ Heatmap 

Epidural 

  

Intraparenchymal 

  

Intraventricular 

  

Normal 

  

Subarachnoid 

 
 

Subdural 

 
 

Fig. 7. Side-by-side comparison of original CT scans (left) and Grad-
CAM++.
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V. CONCLUSION AND FUTURE WORK
In this study, we presented a validated Swin Transformer-based
deep learning framework for the multi-class classification of
intracranial hemorrhage in TBI CT scans. The hierarchical ViT
architecture demonstrated strong capability for modeling both local
and global contextual features through windowed and shifted self-
attention mechanisms. Using a balanced dataset of 60,000 CT
slices generated through structured augmentation of self-collected
scans from Shriman Hospital, Jalandhar, the proposed model
achieved an accuracy of 82.02%, which surpassed the Efficient-
NetV2-S baseline. The statistical significance of this improvement
was confirmed through McNemar’s test, while 5-fold cross-vali-
dation showed consistent stability across folds. Interpretability
analysis using Grad-CAM++ further revealed that the model

Fig. 8. Training versus validation accuracy across 40 epochs.

Table IV. Comparison of Swin-Tiny with state-of-the-art
models

Model Training strategy
Test

accuracy (%)

K-nearest neighbors On ResNet-18 features 50.29

Support vector machine On ResNet-18 features 46.67

Random forest On ResNet-18 features 46.60

Logistic regression On ResNet-18 features 43.14

ResNet-18 (baseline) Undertrained (imbalanced
data, 10 epochs)

44.18

EfficientNetV2-S Multi-stage and progressive 80.17

Swin Transformer-Tiny Fine-tuning (80 epochs) 82.02

Fig. 9. Training versus validation loss across 40 epochs.
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consistently focused on clinically relevant hemorrhagic regions,
strengthening its potential clinical value.

Although the accuracy gain over EfficientNetV2-S was mod-
est, the Swin Transformer provided clearer advantages in terms of
robustness to imaging perturbations, more localized and clinically
meaningful attention maps, and faster inference speed. These
characteristics indicated that the model is well suited for real-world
emergency triage and decision support.

This work, however, was constrained by its single-center
dataset, which may limit variability in scanner types, imaging
protocols, and demographic diversity. The dataset was not com-
bined from multiple institutions, and although augmentation
enhanced class balance, broader generalization may still require
more heterogeneous data sources. To address this, future research
will incorporate multi-center clinical datasets, richer radiologist-
verified annotations, and hybrid CNN–Transformer fusion strate-
gies to further improve classification granularity and robustness.
Overall, the findings demonstrated the potential of transformer-
based architectures to enhance automated hemorrhage assessment
and support radiologists in time-critical neuroimaging workflows.

Future work will explore scaling to larger multi-center data-
sets, integrating clinical and biomarker data alongside imaging, and
extending the framework with multimodal fusion approaches.
Moreover, further research into explainability and uncertainty
quantification will be pursued to enhance clinical trust and deploy-
ment readiness.
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