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Abstract: This work presents a dialect-aware and noise-robust Kannada automatic speech recognition (ASR) system that bridges
the gap between low-resource linguistic contexts and state-of-the-art deep learning models. We design a two-stage approach: (i) a
scratch-built convolutional neural network (CNN)–Transformer hybrid trained on curated Kannada speech data with fast Fourier
transform-based noise reduction and (ii) fine-tuning OpenAI’s Whisper-small model on a dialect-diverse corpus. The proposed
pipeline integrates adaptive noise suppression, subword tokenization, and beam-search decoding to handle agglutinative
morphology, speaker variation, and environmental noise.

Extensive experiments were conducted on two datasets: the Few-shot Learning Evaluation of Universal Representations of
Speech (FLEURS) multilingual Kannada subset and a curated 150-sample, Custom-collected Kannada speech dataset covering
both formal and conversational speech. On the FLEURS test set (≈ 2.5 hours), our fine-tuned Whisper model achieves a word
error rate (WER) of 0.15, a character error rate (CER) of 0.255, and a BLEU score of 0.912, representing a 53% relative reduction
in WER and 36% reduction in CER compared to the scratch CNN–Transformer baseline.

For the customized dataset, the fine-tuned Whisper model achieves a WER of 0.2311 and a CER of 0.0453, outperforming
Google Speech-to-Text Application Programming Interface (API) by 16.8% (relativeWER reduction) and surpassing the scratch
transformer by over 70% in WER. We further evaluate robustness under dialectal variation and noisy recordings, providing
detailed error analysis and computational efficiency metrics. To our knowledge, this is the first comprehensive evaluation of
Whisper fine-tuning for Kannada, demonstrating its viability for real-time, edge-deployable applications in education,
accessibility, and public administration.
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I. INTRODUCTION
The field of automatic speech recognition (ASR) has witnessed
rapid advancement, particularly with the advent of deep learning
architectures such as Transformers. However, most of this progress
has been limited to high-resource languages like English, Manda-
rin, and Spanish. Indian languages, including Kannada, remain
underrepresented in mainstream ASR research and deployment.
Kannada, spoken by over 50 million people primarily in the
southern Indian state of Karnataka, exhibits complex phonetics,
agglutinative morphology, and diverse dialects [1]. These linguis-
tic features pose significant challenges for building accurate ASR
systems. Furthermore, the lack of large-scale annotated Kannada
speech corpora limits the training and evaluation of modern end-to-
end ASR models.

Traditional ASR approaches relied heavily on Gaussian mix-
ture models (GMMs) and hidden Markov models (HMMs), which
required extensive feature engineering and were sensitive to noise.
Recent efforts have shifted toward neural network-based methods,
particularly time-delay neural networks (TDNNs), recurrent neural
networks (RNNs), and more recently, Transformer architectures.
The Transformer, originally developed for sequence modeling in

natural language processing (NLP), has shown superior results in
ASR due to its self-attention mechanism, which effectively models
long-range dependencies in audio features [2,3]. Despite these
advancements, adapting Transformers for a low-resource language
like Kannada remains non-trivial, especially when combined with
real-world challenges such as background noise and speaker
variation. To address these issues, we propose a Transformer-
based ASR pipeline tailored for Kannada.

The approach begins with robust preprocessing: applying fast
Fourier transform (FFT) for noise reduction, voice activity detec-
tion (VAD) for silence trimming, and Mel-frequency cepstral
coefficients (MFCCs) for speech feature extraction [4]. The pre-
processed audio is then fed into a convolutional neural network
(CNN)-augmented Transformer encoder–decoder model trained
using Sentence Piece subword tokenization to handle out-of-
vocabulary words efficiently [5]. We further enhance performance
by employing label smoothing, learning rate scheduling, and
character-level decoding, which significantly reduce character
error rate (CER) and improve generalization across speech do-
mains. Fig. 1 illustrates the overall architecture of the proposed
ASR pipeline, which includes preprocessing (FFT, VAD, and
MFCC), a Transformer-based model for acoustic modeling, and
a user interface built for real-time transcription.

The final model is integrated into a lightweight Streamlit-
based application for real-time transcription. We evaluate theCorresponding author: Chandrika Prasad (e-mail: chandrika@msrit.edu).
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model on a subset of the FLEURS multilingual and Custom-
collected Kannada dataset containing both formal and conversa-
tional speech and report metrics such as word error rate (WER),
CER, and BLEU score. The results indicate competitive perfor-
mance given the limited data, and the system shows promise for
deployment in educational, governmental, and accessibility-
focused applications. However, gaps still exist in handling dialectal
variations and in ensuring robustness in highly noisy conditions,
motivating further exploration into multilingual pretraining and
hybrid speech–text models.

Another approach, the OpenAIWhisper model, is employed to
perform ASR. Whisper-based system simultaneously utilizes a
multilingual speech recognition model with an embedded Trans-
former encoder–decoder and multitasks at various levels in the
model’s hierarchy. To streamline processes, Whisper accepts raw
audio and self-normalizes, turning it into log-Mel spectrograms.
These spectrograms are encoded to produce embeddings that
characterize acoustics’ local details as well as global contexts.
Using learned cross-lingual representations and self-attention, the
decoder autoregressively produces translations in Kannada (the
target) from interlinear multilingual corpora supplied during train-
ing. Whisper models English–French–Bengali code-mixed speech
as well as regional varieties of low-resource languages seamlessly
without any specialized training due to its end-to-end architecture
trained on vast amounts of text–audio pairs, emulating human-level
recognition and reasoning skills even in noisy conditions where
resource is scant. Outputs from the model can be optionally further
refined through beam-search decoding for improved accuracy.
Built-in detection of the dominant language, alongside support
for multiple languages, makes Whisper ideal for diverse dialect
use-case scenarios which other systems would struggle with due to
rapid code-switching between languages.

A. CONTRIBUTION OF THE PROPOSED WORK

The key contributions of the proposed work are as follows:

• NovelKannada ASR pipeline—We design a two-stage ASR
framework that combines a scratch-built CNN–Transformer
hybrid with a fine-tuned Whisper-small model, tailored for
Kannada’s phonetic complexity and agglutinative
morphology.

• Dialect and noise robustness — We curate and evaluate on a
speech corpus spanning multiple dialects and noise conditions,
integrating FFT-based preprocessing and SpecAugment aug-
mentation for improved generalization.

• Comprehensive evaluation — We benchmark against both
commercial (Google Speech Application Programming Inter-
face (API)) and academic baselines, reporting WER, CER,
BLEU, precision, recall, F1-score, and accuracy, along with

ablation studies quantifying the impact of each pipeline
component.

• Error and robustness analysis — We present a detailed break-
down of substitution, insertion, and deletion errors across
dialects, noise levels, and code-switching scenarios, providing
insights for low-resource ASR optimization.

• Deployment-ready design — We implement a lightweight,
real-time transcription interface using Streamlit, optimized for
GPU and edge devices, enabling practical use in classrooms,
government offices, and accessibility tools.

B. NOVELTY AND DISTINCTIVE FEATURES

While prior studies have demonstrated Whisper’s capability for
multilingual ASR, most have focused on high-resource languages
or generic multilingual benchmarks without considering the pho-
netic, morphological, and dialectal diversity of Kannada. In con-
trast, our work makes three key distinctions:

1. Dialect-diverse corpus construction — We curate and fine-
tune on a dataset spanning multiple Kannada dialects
(e.g., Mysuru, Dharwad, and Bengaluru urban), covering
formal and conversational registers, thereby addressing dia-
lectal variation — a factor largely absent in existing Whisper
fine-tuning literature.

2. Noise-robust training and evaluation — We explicitly incor-
porate FFT-based noise suppression, Gaussian noise augmen-
tation, and evaluation under varying noise profiles (e.g.,
street, marketplace, and classroom recordings), making our
results more representative of real-world deployment
conditions.

3. Low-resource adaptation—Our training corpus comprises just
50 hours of curated speech, yet achieves competitive or
superior results to commercial APIs and large-scale models,
demonstrating Whisper’s adaptability to resource-constrained
scenarios.

C. MOTIVATION

The research survey indicates that previous Kannada ASR systems
have concentrated on small, single-dialect datasets in controlled
(i.e., clean) environments and have not taken into account all of the
challenges posed by combining dialectal variability, morphological
complexity, and noisy (i.e., not clean) real-world data. Addition-
ally, to the best of our knowledge, no previous study has fine-tuned
the Whisper model specifically for Kannada or benchmarked it
against a scratch-built Transformer baseline and a commercial API.

Our work differs from existing low-resource ASR systems in
three aspects:

(1) Creation of a dialect-diverse Kannada corpus,

(2) Noise-robust fine-tuning and evaluation, and

(3) A two-baseline comparison using both a Transformer model
and Google Speech-to-Text.

These elements position our work as the first comprehensive
Whisper fine-tuning study tailored to Kannada’s linguistic com-
plexity, dialectal diversity, and noisy real-world usage environ-
ments. The rest of the paper is structured as follows: Section II
presents the related work. Implementation of the hybrid CNN–
Transformer model and the OpenAI Whisper model is discussed in
detail in Section III. Performance analysis of the above-mentioned

Fig. 1. Overview of the proposed Kannada ASR system.
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models is focused on in Section IV, and Section V presents the
conclusion and future work.

II. RELATED WORKS
To design ASR for the low-resource languages like Kannada, it is
essential to do an extensive literature survey. This section presents
a summary of key-related works in the ASR domain. It provides a
comparative analysis of methodologies, results, pros, and cons
from previous studies.

A. ASR FOR INDIC LANGUAGES AND
LOW-RESOURCE SETTINGS

Comparing the semantic similarity of cross-lingual translations is an
important aspect of NLP [13]. Semantic similarity computation is
vital for a number of applications like assessing machine translation
systems, quality control of human translation, information retrieval,
plagiarism detection, etc. The proposed technique yields the best
correlation of 83% when compared to human annotations. Experi-
ments on semantic matching and retrieval tasks yielded encouraging
results with respect to precision and recall.

A thorough analysis of ASR technologies was presented in
[14], following their development from early systems to contem-
porary deep learning-based models. It contrasts the Transformer
and Long Short-TermMemory (LSTM) architectures, emphasizing
the advantages and disadvantages of each for speech recognition.
Future directions are also covered in the study, with a focus on how
deep learning could improve ASR efficiency and accuracy.

Malayalam speech-to-text converter for isolated words based
on deep learning and using feature extraction methods is given in
[17]. The AM and speech signals used as input were preprocessed,
transformed to MFCC feature representation, and modeled with
HMM in training and recognition. Artificial neural network
(ANN)-based LSTM achieved greater than 95% accuracy.

Using the OpenNMT framework [18], this study integrated
text-to-text, speech-to-text, and text-to-speech modules to propose
a real-time speech-to-speech translation system for multilingual
communication. With a focus on translating from Tamil to Hindi,
the system received 91% positive user feedback and achieved
89.4% BLEU accuracy, a WER of 12.1%, and a processing speed
of less than 1 second.

This research analyzed machine translation methodologies for
Dravidian languages [19], which are plagued by lexical divergence,
ambiguity, and complex structure. Analysis further focused on the
best translation models and previous work to estimate the viability
and quality of machine translation among the low-resource Dra-
vidian languages.

A Tamil speech-to-text prototype [20] aims to avoid code-
mixing and code-switching with the principle of ‘what you speak is
what you get’. The system, built with Google’s Cloud API, was
tested with 28 Tamil words, successfully rejecting mispronuncia-
tions and non-Tamil inputs. This approach preserves the linguistic
purity of the input.

Another research shows an optimized Whisper on Javanese
[25], a low-resource language, via parameter-efficient fine-tuning to
limit trainable parameters to <1%. The fine-tuned Whisper large-v2
model had a WER of 13.77%, a staggering reduction from the
baseline 89.40%, demonstrating that PEFT-based fine-tuning can
greatly enhance Whisper’s performance on low-resource languages.

Prompt-based methods to deal with language interference and
expansion in Whisper are presented in [26]. Entire soft prompt

tuning (SPT) and language-aware prompt tuning (LAPT) improved
both the encoder and decoder. On the FLEURS dataset, these
methods surpassed baseline prompt tuning by up to 16%. This
shows effective continual learning for multilingual ASR with low
computational cost.

B. NOISE-ROBUST SPEECH PROCESSING AND
AUDIO PREPROCESSING TECHNIQUES

A spectral gating and FFT techniques are well suited for noise
reduction in vocal communication [1]. Tests conducted on actual
noises, such as fans, horns, and dog barking, revealed that these
techniques greatly increased signal-to-noise ratio (SNR) and gen-
erated audio signals with greater clarity. The findings imply that
spectrum gating and FFT offer workable and efficient ways to
achieve strong noise reduction in telecom applications.

A cat swarm-optimized spiking neural network [2] for speech
emotion recognition was proposed in this study. The model out-
performed the RNN,DNN, andDSNNbaselines with an accuracy of
99.3% using wavelet-based feature extraction on the Toronto Emo-
tional Speech Set (TESS) dataset. The outcomes demonstrate that
Cat Swarm Optimized Spiking Neural Network (CSSPNN) per-
forms emotion recognition tasks by fusing high accuracy with low
computational complexity.

An FFT-based noise cancelation is implemented [3] to im-
prove Hindi speech-to-text. It utilized a fine-tuned Wav2Vec2.0
model that was trained on the OpenSLR dataset. Researchers added
Gaussian noise at different intensities. Evaluation with CER
showed that noise cancelation effectively reduced errors, especially
at lower noise levels (STD= 0.01). Another study [6] suggested a
two-level framework integrating CNNs with XGBoost and Ada-
Boost, optimized through a customized particle swarm optimiza-
tion (PSO) algorithm, for the detection of respiratory disorder.
Based on Mel spectrograms from clinical breathing databases, the
system was able to provide 98.14% accuracy for binary classifica-
tion and 81.25% for multi-class condition detection. The findings
emphasize the performance capability of CNN-based models with
sophisticated optimizers for clinical audio analysis.

Recent advances in AI and deep learning-based audio signal
processing, including COVID-19 cough classification, were
explored in [7]. Experimental results showed 96% accuracy using
CNN+ ResNet-50, dolphin whistle recognition with 94.9% accu-
racy using ensemble ResNets, enhanced sound event detection with
Lightweight U-Net with Upsampling (F1: 0.644–0.531), ultra-fast
pitch detection, efficient acoustic imaging, and CNN–scalogram
models outperforming traditional spectrograms.

A study on the issues to tackle poor generalization (to different
devices) in audio event classification was discussed in [8]. The
authors proposed a CNN-based model using log-Mel-spectrogram
separation to increase robustness to the devices. The experimental
results on 16 audio classes demonstrated that the proposed system
provides a significant improvement in classification accuracy
(95.27% Google Pixel, 92.11% LG V50) compared with baseline
models (83.02% and 70.59%). There was also an increase in
classification accuracy when implementing the model on an
embedded device, as it improved from 63.63% to 73.33% (Google
Pixel) and 47.42% to 65.12% (LG V50). This illustrates the
model’s utility for real-world deployment. Compression-based
audio tokens for speaker verification, dialization, and (multilin-
gual) speech recognition are assessed in this study [9]. Results
demonstrate that models trained on audio tokens offer up to 20 ×
compression, robustness on out-of-domain narrowband data, and
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insights into tokenizer design through the low-pass frequency
response of residual vector quantization, all while performing
competitively—within 1% of Mel-spectrogram features.

C. TRANSFORMER MODELS AND
WHISPER-BASED ASR

In a recent study [4], the voice responses from smartphone surveys
were compared between OpenAI’s Whisper and Google’s Speech-
to-Text API. The findings indicated that while Google’s API was
quicker but more prone to errors, Whisper produced transcriptions
that were more accurate. Similar error types were present in both
systems, although Google experienced them more frequently. The
impact of attention-based models, transfer learning, and end-to-end
deep learning on monolingual and multilingual systems was
highlighted in this survey, which examined developments in
ASR since 2010 [5]. It demonstrated how deep learning was still
data-dependent and susceptible to noise and language resources by
examining performance across public datasets. Along with
highlighting important issues like generalizability, speaker vari-
ability, and low-resource adaptation, the study also suggests future
directions for open-source ASR research.

Another approach presented recent developments in audio signal
processing, highlighting AI-based methods [10] for tasks such as
speech recognition, sound event detection, medical voice diagnostics,
and marine monitoring. Highlights from reported results include
CNN–scalogram models achieving classification rates of 98% accu-
racy, ultra-fast pitch detection methods with sub-10 ms latency, and
new techniques for improving acoustic imaging and controlling
sound fields. The contributions presented in this special issue strongly
demonstrate AI-enhanced approaches to make efficiency, accuracy,
and applicability considerably better than traditional approaches.

The usefulness of fastText word embeddings [11] for classify-
ing Bangla documents without the need for preprocessing proce-
dures like stemming or lemmatization was examined in this study.
Three deep learning models—CNN, Bidirectional Long Short-Term
Memory (BiLSTM), and Convolutional Bidirectional Long Short-
Term Memory (Conv-BiLSTM)—were assessed using a dataset of
40,000 news articles in 12 categories. With accuracies of 91.49%
during training, 87.87% during testing, and 85.5% during validation,
the BiLSTM model outperformed the others. These results demon-
strate that fastText embeddings and BiLSTMoffer a reliable solution
for tasks involving the classification of Bangla text.

In order to lessen noise and redundancy in unbalanced corpora
[12], the paper proposed a novel word association technique called
Weighted Point-wiseMutual Information with Contextual Distances
and Positions (PMIDP). PMIDP improved context representation for
word similarity tasks by combining positional variation weighting
and distance-based scaling (PMIdist). The method outperformed a
number of cutting-edge models when applied to Positive Point-Wise
Mutual InformationMatrixWith Truncated Singular Vector Decom-
position (PPMI-SVD) and GloVe, greatly enhancing performance
on both semantic and relational similarity benchmarks.

An end-to-end framework that augments Wav2Vec2-based
ASR for low-resource languages was discussed in [15]. Tests on
Arabic, Russian, and Portuguese fromCommonVoice indicate that
the method is insensitive to dialect variation and diacritics. Relative
to baseline Wav2Vec2 and Whisper, it obtained mean relative
improvements of 33.9%WER, and 53.2% CER, indicating notable
progress for underrepresented languages.

The paper presented DATR-SR [16], a Dynamic Adaptive
Transformer for real-time multilingual ASR, integrating adaptive

encoding, multi-scale features, and context-aware decoding. On
benchmarks like Aishell-1, LibriSpeech, and CommonVoice, it
attained WER as low as 4.3% and CER of 2.7%, with >91%
accuracy and <15 ms delay, improving state-of-the-art baselines in
terms of robustness and efficiency.

A cascaded perceptual functional link artificial neural network
(Cascaded PFLANN) architecture [21] offers an innovative method
for the early detection of respiratory diseases through the analysis
of their speech characteristics at very low cost and high accuracy
levels. The PFLANN uses the concept of bioinformatics and the
ability of human beings to identify complex sound patterns in their
environment to provide an efficient and effective solution to the
issue of detecting respiratory disease from speech. The experiment
results showed a significant improvement in both effectiveness and
efficiency of PFLANN with 94% accuracy over traditional classi-
fiers while being sufficiently lightweight for use within an IoT
(Internet of Things) framework for health monitoring.

Other studies have attempted to port Whisper to low-resource
and multilingual environments. For instance, LoRA-Whisper [22]
used parameter-efficient tuning for minimizing language interfer-
ence and adding new languages without damaging old ones with up
to 23% performance improvement over eight languages. Such
efforts do not contemplate phonetic and dialectal diversity in
Kannada under noise, which is addressed in this research.

Multilingual DistilWhisper, an efficient parameterization that
integrates language-specific experts, is discussed in [23]. Knowledge
distillation from Whisper-large-v2 helps in enhancing ASR perfor-
mance across underrepresented languages. Their approach reduces
the difference in performance between large and small Whisper
models by a widemargin while introducing little inference overhead.
Recent research has demonstrated [24] that elicited imitation (EI)
scoring can be efficiently automated by combining Whisper ASR
with the WER metric. Whisper’s error rates demonstrated a strong
alignment with human raters (ICC= 0.929) and a strong correlation
with conventional manual scoring methods (r= 0.969) in a study
involving 900 English L2 responses. These findings show that
Whisper’s automated EI scoring is accurate and dependable, pro-
viding a scalable substitute for laborious manual assessment.

The literature survey provided an in-depth review of recent
advancements in ASR, particularly for the Kannada language—a
low-resource language with unique phonetic characteristics. The
survey explores the application of deep learning models such as
CNNs, LSTMs, Transformers, and hybrid architectures for improv-
ing speech recognition accuracy. It also evaluates audio preproces-
sing techniques like spectral gating, FFT, and spectral subtraction
for noise reduction and highlights feature extraction methods such
as Mel spectrograms and discrete audio tokenization. The study
emphasizes the role of language modeling through word embed-
dings (e.g., fastText) and investigates the effectiveness of
Transformer-based sequence-to-sequence models. Real-world
applicability is a key focus, especially in resource-constrained
environments.

D. RESEARCH GAPS

• Existing studies utilize spectral gating, spectral subtraction,
and FFT for noise cancelation, and there is limited exploration
of hybrid techniques that integrate deep learning-based de-
noizing with traditional signal processing methods.

• The effectiveness of these approaches under extreme noise
conditions remains a challenge, as highlighted by the studies
on FFT-based noise cancelation.
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• Additionally, research on noise reduction primarily focuses on
improving the SNR and CER but lacks comprehensive evalua-
tions on real-world speech intelligibility and user experience.

• Moreover, while deep learning models like Wav2Vec2.0 and
Transformer-based ASR systems demonstrate impressive re-
sults, their robustness to dialectal variations and unseen noise
types needs further improvement.

• These insights pave the way for future research to develop
inclusive, accurate, and efficient Kannada ASR systems.

III. METHODS
Kannada Speech-to-Text Transcription model is developed using
CNN–Transformer hybrid and pretrained OpenAI Whisper mod-
els. This section provides details about the implementation.

A. DATASET DESCRIPTION

The dataset for ASR task is taken from FLEURS, a part of Hugging
Face. The FLEURS multilingual dataset has the following
characteristics:

• Each audio file is very short duration per sample and is
typically 3 to 6 seconds.

• Most languages in FLEURS have∼1 hour of total audio for the
standard 1,000-sample set.

• It has a repository of multilingual speeches.

For the proposed work, a total of 3489 speech recordings of
approximately 5 hours of speech are considered, out of which 2442
(70%) samples are taken for testing, 349(10%) samples for valida-
tion, and remaining 698 (20%) for testing.

Beyond the standard FLEURS dataset, we conducted a sec-
ondary evaluation using 150 externally collected real-world Kan-
nada audio samples (Custom-collected) as shown in Tables I and II.
These samples were not used in training and were included solely
to measure generalization across different speakers, spontaneous
speech, and naturally noisy environments. We propose a Trans-
former-based ASR pipeline specifically designed for Kannada. The
audio is first cleaned using FFT noise reduction, VAD trimming,
and MFCC feature extraction and then passed to a CNN-enhanced
Transformer model trained with SentencePiece subword tokeniza-
tion to handle out-of-vocabulary words effectively.

To achieve high-quality and accurate transcripts, we manually
transcribed all audio with Kannada annotators. Annotators checked
for word-level accuracy, spelling consistency, completeness, and
proper treatment of dialect-specific variation.

B. KANNADA ASR USING CNN–TRANSFORMER
HYBRID MODEL

The implementation of the Kannada ASR system followed a
structured, modular approach combining signal processing

techniques with modern deep learning architectures. Beginning
with unsupervised tokenization using SentencePiece and embed-
ding generation via singular value decomposition (SVD) [7,8], the
pipeline advanced through data augmentation with Gaussian noise
to simulate real-world conditions.

A noise removal module based on FFT cleaned the input
audio, which was then converted to Mel spectrograms for feature
extraction. These spectrograms were processed by a CNN to extract
key audio features, which were passed into a Transformer-based
encoder–decoder architecture for character-level transcription.
Training was conducted using a custom softmax cross-entropy
loss and evaluated using character and word-level accuracy me-
trics. A Streamlit-based user interface enabled seamless interaction
with the system, allowing users to upload audio files and receive
Kannada text output in real time. Each module—from tokenization
to decoding—was developed and integrated to ensure robustness,
accuracy, and usability in practical environments, visualizing and
interpreting the results.

The architectural design shown in Fig. 2 of the Kannada
Speech-to-Text Transcription system is structured around a modu-
lar and layered approach to ensure clarity, reusability, and scal-
ability [9]. At its core, the architecture follows a pipeline that
begins with audio input collection, either through direct recording
or file uploads. This input is handled by the audio input module,
which manages audio streams or file paths, standardizes formats,
and sends the data to the next phase for processing.

Table I. Dataset split on custom dataset

Dialect region Duration (hours) No. of speakers Male/female Speech style

Mysuru 17 hours 24 speakers 13 M/11 F Formal (news-style), conversational

Dharwad 16 hours 22 speakers 12 M/10 F Conversational, semi-spontaneous

Bengaluru Urban 17 hours 22 speakers 11 M/11 F Mixed (formal+ informal)

Total 50 hours 68 speakers 36 M/32 F Formal + conversational

Table II. Composition of the 50-hour curated Kannada speech
corpus

Category Details

Total duration 50 hours

Total speakers 82 speakers (36 male, 32 female)

Age range 16–35 years

Dialect coverage Mysuru (South Karnataka), Dharwad
(North Karnataka), Bengaluru Urban

Dialect distribution ∼33% each from Mysuru, Dharwad,
Bengaluru regions

Speech styles Formal read speech, conversational
spontaneous speech

Recording
environments

Quiet indoor rooms, homes, classrooms,
markets, traffic-heavy outdoor areas

Recording devices Mobile microphones, USB condenser mics

Transcription method Manual transcription by trained Kannada
annotators+ secondary verification

Text type Scripted prompts+ free-form conversational
responses

Noise conditions Natural environment noise+mild
background disturbances

Purpose of collection Whisper fine-tuning and robustness evalua-
tion under dialectal and noisy conditions
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1). INPUT PHASE. This phase handles the preprocessing and
encoding of raw speech features [10]. This improves speech
modeling by adding local convolution to traditional transformer
self-attention, and the following are the functions performed inside
the input phase:

• SpecAugment: A data augmentation method applied to spec-
trograms. It masks portions of the time and frequency axes to
improve robustness and prevent overfitting.

• Convolution subsampling: This method reduces the length of
the input sequence and computational load by applying con-
volution and downsampling. It helps the model to focus on
higher-level temporal features.

• Linear: A linear transformation (fully connected layer) is
applied to project the subsampled feature dimension to a
suitable size for the encoder.

• Conformer encoder blocks: These are stacks of Conformer
blocks—a combination of convolutional and transformer
layers. They capture both:
○ Local features (via convolution for phoneme-like units)
○ Global context (via self-attention)

2). DECODER. This section generates the text one token at a time
using past outputs and encoder output as a transcribed text
sequence [11]. Decoder is strong in language modeling, ensuring
fluent and grammatically correct transcription. The functions per-
formed by the decoder include output embedding, positional
encoding, and decoder stack. The output from the decoder is
passed through a linear layer and softmax to produce a probability
distribution over the vocabulary.

The detailed implementation of Transformer-based Kannada
ASR system is shown in Fig. 3 and is described below:

1. Text Tokenization and Embedding Preparation: We used
SentencePiece for unsupervised character-level tokenization

of Kannada text. It provided subword units which are efficient
for modeling agglutinative languages like Kannada [13,14].
These tokens were mapped to continuous vector representa-
tions using SVD on the co-occurrence matrix of tokens,
producing low-dimensional embeddings. Data Augmentation:
To simulate real-world noisy environments, we added Gauss-
ian noise to the raw audio waveforms. This helped improve the
robustness of the model in realistic conditions.

2. Noise Removal Pipeline: We implemented an FFT-based
noise reduction pipeline. By transforming the signal to the
frequency domain, we identified and suppressed noise-domi-
nated frequencies, followed by an inverse FFT to reconstruct
the denoised waveform.

3. Mel-Spectrogram Extraction: Cleaned audio signals were
converted to Mel spectrograms using a short-time Fourier
transform (STFT) followed by Mel filter banks. This 2D
representation of audio was treated like an image for further
processing [15].

4. CNN Feature Extraction: The spectrograms were passed
through a CNN to extract high-level features, reducing tem-
poral and spectral dimensions while preserving relevant
information.

5. Transformer Encoder–Decoder Architecture: The CNN fea-
tures were input to a Transformer encoder. A Transformer

Fig. 2. The architecture diagram has two phases.

Fig. 3. Algorithm of ASR using CNN–Transformer hybrid model.
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decoder was used for sequence generation. It took the start-
of-sequence token () and the encoder output to predict the next
character. At each timestep, the predicted character token was
fed back into the decoder to generate the next token, continu-
ing until the end-of-sequence token () was predicted.

6. Loss Function and Optimization: We use a custom loss based
on softmax cross-entropy between predicted and target
embeddings.

7. Model Training and Evaluation: The model was trained on
labeled Kannada audio–text pairs. Evaluation involved check-
ing character-level and word-level transcription accuracy, and
robustness on noisy inputs.

8. User Interface Development: A functional web-based applica-
tion allowing users to upload audio files and receive transcrip-
tions. Key features of the UI include:

• Aweb-based graphical user interface (GUI) developed using
Streamlit for ease of use.

• Audio upload interface that supports formats like WAV,
MP3, and FLAC for both real-time and batch transcription.

• Real-time transcription display showing Kannada text out-
put as the speech is processed.

• Download option to save the transcription in a text file for
offline access.

• Accessibility features such as large buttons, simple layout,
and minimal user actions to accommodate non-technical
users and those with disabilities.

C. ASR MODEL USING WHISPER OPENAPI

The second approach employed is OpenAI’s Whisper “small”
model known as a pretrained [16] backbone, which has already
been trained on thousands of hours of multilingual speech–text
pairs. The algorithm shown in Fig. 4 describes the steps carried out
during the implementation. We reuse the exact same noise injec-
tion, FFT-based denoizing, and Mel-spectrogram extraction pipe-
line and then fine-tune all of Whisper’s layers on our 50 hours of
Kannada data of 150 samples during testing. Because Whisper
already possesses powerful audio–text alignment, fine-tuning con-
verges in about 15 epochs—each roughly 10 minutes—using a
reduced learning rate schedule.

Performance optimization in the Kannada ASR system tar-
geted both latency reduction and resource efficiency. Key enhance-
ments included the use of batch normalization and dropout within
neural network layers to stabilize training and prevent overfitting.
FFT andMFCC extraction pipelines were vectorized using NumPy
for rapid execution. On the deep learning side, the model incorpo-
rated attention masking and gradient checkpointing to manage
memory consumption during training on long sequences. The use
of mixed-precision training (via TensorFlow’s tf.keras.mixed_
precision module) allowed reduced memory usage and faster
computation without compromising model accuracy.

Inference performance was improved using GPU-accelerated
execution [17] and dynamic batching. The Transformer decoder
leveraged caching of encoder outputs to avoid redundant compu-
tation in autoregressive generation. TensorRT optimization and
ONNX export compatibility were explored for further acceleration.
Additionally, early stopping and learning rate warm-up schedules
ensured efficient convergence during training. Real-time interac-
tion on the Streamlit UI was optimized with asynchronous call-
backs and debounced input handling, ensuring a smooth user

experience even on larger input files. Combined, these measures
ensured that the system could scale and perform well across a
variety of deployment environments.

The feature extractor computes log-Mel spectrograms (80 × T)
with a 25 ms window and 10 ms hop and then applies the two 1-D
convolutional front-end layers built into Whisper as shown in
Equation 1.

Conv60→768ðk=3, s=1Þ→ReLU→Conv768→768ðk=3, s=2Þ (1)

1). TEXT TOKENIZATION. The processor uses the 518k-token
multilingual vocabulary released with Whisper. Sequences are pad-
ded/truncated to 448 tokens; the padding id remains 0, while the loss
ignore index is set to−100 so that padding tokens do not contribute to
label cross-entropy (LCE). Because audio durations vary, labels are
zero-right-padded to the longest target length in the batch; audio
features are stacked as-is (the convolutional subsampling equalizes
frame counts across samples). Table III gives the collator used by the
Hugging Face trainer. The encoder–decoder weights are initialized
from vasista22/whisper-kannada-small, a Kannada-specialized
checkpoint derived from OpenAI Whisper-small (12 layers, dmodel
= 768, 12-head attention, and 244M parameters).

Fig. 4. Algorithm for WSR-based ASR model.

Table III. Hyperparameters fine-tuning

Hyperparameters Value

Learning rate 1 × 10− 4 (AdamW, β= (0.9, 0.98))

Batch size (train/val) 8/8

Epochs 3

Gradient clip 1.0

Scheduler Linear warm-up (500 steps)

Generation max length 448

Mixed precision FP16 (autocast)

Checkpointing every epoch
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2). TRAINING LOOP. Training uses the Hugging Face Seq2Seq-
Trainer, which performs:

1. Forward pass producing logits Z ∈ RB×T×jV j where B is the
batch size and T is the target length.

2. Compute cross-entropy loss LCE=−1B Σi,t log p_(Li,t |Fi),
ignoring indices −100.

3. Back-propagation; gradients are clipped and optionally scaled
by GradScaler under FP16.

4. Parameter updates via AdamW; learning rate is linearly de-
cayed to zero after warm-up.

5. At epoch end, transcriptions are generated on the validation
split with greedy decoding (no language prompts), and the
model checkpoint is saved.

Inference
For deployment, only the Whisper Processor (feature extractor +
tokeniser) and the fine-tuned WhisperForConditionalGeneration
weights are required. Given a 16 kHz mono waveform x:

F= FeatureExtractor(x), (1)
ŷ=Whisper(F) via greedy decoding, (2)
ASR(x)= Tokeniser.decode(ŷ). (3)

3). MODEL ARCHITECTURE. Our system fine-tunes Whisper
For Conditional Generation (244 M parameters), an encoder–
decoder Transformer specialized for ASR [18]. Fig. 3 give pseu-
docode for the forward passes, while Table IV summarizes key
dimensions.
Computational Resources and Deployment Feasibility for ASR
system: The Kannada ASR system can run on a typical GPU
workstation. In practice, an 8-GB VRAM GPU is sufficient for
real-timeWhisper inference, while a multi-core CPU handles audio
preprocessing and user interface tasks. We recommend at least 16
GB of system memory. The fine-tuned Whisper-small model is
lightweight (around 32 MB) and uses roughly 1.1 GB of GPU
memory during inference. On a GPU, transcription happens in real
time, and batch processing (up to 16 audio files at once) is
supported. Audio operations such as FFT, noise reduction, and
resampling are implemented using Librosa, SciPy, and FFmpeg,
with all deep learning models developed in PyTorch. The system
includes a simple Streamlit web interface that accepts WAV, MP3,
and FLAC files, with support for both microphone input and
uploaded audio. Communication is handled through standard
HTTP/HTTPS or low-latency WebSocket/gRPC, and the backend

uses SentencePiece tokenization with an FFT-based preprocessing
pipeline. Security features include Transport Layer Security/Secure
Sockets Layer (TLS/SSL) encryption and optional role-based
access control. Although the system works best on a GPU, it
can also be deployed in batch mode on medium-power devices,
such as NVIDIA Jetson, for offline processing.

4). ENCODERFORWARDPASS. The encoder takes in a log-Mel
spectrogram S∈R80×T, which is a time-frequency representation of
the input Kannada audio. It passes through two convolutional
layers [19]: the first expands the channels from 80 to 768 using
a kernel size of 3, stride 1; the second maintains 768 channels but
uses stride 2 to downsample the temporal dimension. A Gaussian
Error Linear Unit (GELU) activation is applied after the second
convolution. Then, positional embedding is added to retain the
temporal order of speech signals. This output is passed through 12
Transformer encoder layers, each consisting of layer normaliza-
tion, self-attention, and a feed-forward network (FFN). After all
layers, a final layer normalization is applied to output the encoder
hidden states Henc∈RT′×d, where d= 768d= 768d= 768.

5). DECODER FORWARD PASS. The decoder receives the toke-
nized Kannada text input as a sequence of token IDs y1.L. Along
with the encoder output Henc, first, the token IDs are embedded using
a token embedding and a positional embedding to form input U. The
decoder has 12 Transformer decoder layers, and each layer performs
three operations: causal self-attention (CausalSDP) for autoregres-
sive decoding, cross-attention (SDP_XAttn) to incorporate encoder
information, and an FFN. Each of these sublayers is preceded by
layer normalization and uses residual connections. Finally, the
decoder output is projected to the vocabulary size |V|, yielding
logits Z∈RL×|V|Z, from which the most likely tokens are predicted.

The processing starts with uploading audio or direct recording
and normalized to a consistent format (16 kHz, mono, 16-bit PCM).
Next, VAD is applied using WebRTC-VAD to segment the audio
into speech regions {sk}. Each segment is chunked into ≤30-
second windows {ck,j} and passed through the WhisperProcessor,
which performs feature extraction. For each chunk fk,j, Whisper
generates a predicted text segment ŷk,j which is appended to the
final transcript ŷ. The system also supports live updates of the
transcription area [20]. After transcription, it performs postproces-
sing such as computing word count, WPM (words per minute), and
latency. The output is displayed in a text area, and users can
download the transcript or clear the session. Users may upload
audio files or record speech directly in the browser. Both pathways

Table IV. Dimensionalities of major components (T= spectrogram frames after convolutions, L= decoder time-steps)

Stage Layer(s) #Params Output shape

Encoder

Conv 1 (k= 3, s= 1) 80 → 768 ch. 184 k 768 × T

Conv 2 (k= 3, s= 2) 768 → 768 ch. 1.77 M 768 × T/2

Positional Emb. 1500OE768 1.15 M 768 × T/2

12 Enc. Layers MH-SA+ FFN 97.7 M 768 × T/2

LayerNorm 1.53 k same

Decoder

Token Emb. 51 865OE768 39.9 M 768 × L

Positional Emb. 448OE768 343 k 768 × L

12 Dec. Layers MH-SA+X-Attn+ FFN 102 M 768 × L

LayerNorm 1.53 k same

Projection 768 → 51 865 39.9 M |V| × L
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converge to an identical representation: 16 kHz, mono, 16-bit
PCM. File metadata (size, format) are displayed as metric cards
for immediate feedback.

Segments pass through Steps 35 sequentially. Chunk-level
progress updates the circular progress bar, while partial hypotheses
are streamed to the Live Transcription text area, ensuring sub-
second UI latency for a snappy user experience.

An expandable panel plots the normalized waveform and lists
basic audio statistics. After inference, the dashboard shows total
word count, processing time, and computed WPM, enabling quick
performance assessment without leaving the browser. The final
transcript is editable in place and can be downloaded as a time-
stamped.txt file. This section describes the end-to-end pipeline
used to fine-tune the vasista22/whisper-kannada-small model for
Kannada ASR.

6). HANDLING OVERFITTING, CLASS IMBALANCE, AND DATA
SPARSITY. We used dropout, early halting, and considerable data
augmentation (Gaussian noise, speed variations, reverberation) to
avoid overfitting. Weighted loss functions and stratified dataset
splits were used to address class imbalance among speakers and
dialects. By fine-tuning Whisper, which already has robust multi-
lingual voice representations, and by employing small-batch train-
ing with learning rate warm-up and cosine scheduling, data sparsity
was reduced. When combined, these techniques allowed for robust
generalization and steady optimization even with a small amount of
Kannada voice data.

IV. RESULTS
The test dataset comprising of 150 video samples is applied on both
transformer and Whisper-based models. The same dataset is tested
on the popular speech-to-text model, which is the popularly used
Google API for the performance of ASR model and is evaluated
with meaningful metrics.

A. EVALUATION METRICS

Let N be the number of test utterances.

1). WORD ERROR RATE (WER). WER shown in Equation 1 is
the most widely used metric in ASR evaluation, as it measures the
proportion of incorrectly recognized words relative to the reference
transcription. For a single utterance pair (yi, ŷi), the Levenshtein
edit distance computes the number of substitutions Si, deletionsDi,
and insertions Ii required to transform ŷ into yi. If Ni is the number
of words in the reference, then: for a single pair (yi, ŷi), the
Levenshtein edit distance returns counts of substitutions, deletions,
and insertions needed to transform ŷi into yi. If Ni is the number of
words in the reference, then

WERI =
si þ Di þ Ii

Ni
WER =

1
N

XN
i=1

WERi (1)

A lower WER indicates better recognition accuracy. Since
Kannada has rich morphology and compounding, WER is espe-
cially sensitive to small errors that alter meaning.

2). CHARACTER ERROR RATE (CER). While WER operates at
the word level, CER shown in Equation 2 computes errors at the
UTF-8-character level, making it suitable for morphologically
complex and agglutinative languages like Kannada. For a reference
utterance yi with Ci characters

CERi =
Sci + Dc

i + Ici
Ci

(2)

CER is often more fine-grained than WER, capturing sub-
word distortions and script-level mismatches.

3). BLEU SCORE. BLEU is traditionally used in machine trans-
lation but has recently been adopted in ASR evaluation for asses-
sing sentence-level semantic overlap. We compute corpus-level
BLEU-4 using sacreBLEU, where modified n-gram precisions pn
with uniform weightswn = 1

4 are aggregated and ares represented in
Equations 3 and 4:

BLEU = BP · expð
X4
n=1

wn log pn (3)

with brevity penalty (BP) defined in Equation 4 as:

BP =
� 1, Lref > Lhypo

e
1−

Lref
Lhypo , otherwise

(4)

We divide the raw percentage by 100 to yield a 0–1 scale.
Here, Lref and Lhypo denote reference and hypothesis lengths,
respectively. BLEU complements WER/CER by capturing fluency
and word-order fidelity.

4). WORD-LEVEL PRECISION, RECALL, F1, AND ACCURACY.
To further quantify recognition as a classification task, we evaluate
word-level precision, recall, F1-score, and accuracy. For each
utterance, let Pi denote the multiset of predicted words and Ri

the multiset of reference words. True positives (TP) are counted by
the multiset intersection, while false positives (FP) and false
negatives (FN) are computed via set differences, and the calcula-
tion is given in Equation 5:

TP = ΣjPi∩Rij, FP = ΣjPi \ Rij FN = ΣijRi \ Pij (5)

The resulting metrics are given in Equation 6:

Precision =
TP

TPþ FP
Recall =

TP

TPþ FN

F1 = 2
2TP

TPþ FPþ FN
Accuracy =

TP

TPþ FPþ FN

(6)

Interpreting the Scores

• WER/CER: lower is better; values ≤0.20 (20%) indicate
competitive large-vocabulary ASR.

• BLEU: higher is better; complementary to WER because it
rewards correct n-gram sequences.

• Precision vs. Recall: Precision stresses clean outputs, and
recall stresses coverage.

• F1 harmonizes the two, and accuracy provides an intuitive “hit
rate” at the word level.

B. RESULTS AND DISCUSSION

Tables IV and V summarize the performance of the two proposed
models against Google’s off-the-shelf recognizer on the FLEURS
and samples collected from Custom-collected Kannada speech
dataset. Fig. 5 provide the visual comparison.

1). PERFORMANCE OF ASR ON FLEURS DATASET. Our
scratch CNN–Transformer was evaluated on a 349-utterance Kan-
nada test set (≈ 2.5 hours) and yielded a WER of 0.32, a CER of
0.400, and a BLEU score of 0.843. In practical terms, about 32% of
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words and 40 % of characters in the ground-truth transcripts were
misrecognized (inserted, deleted, or substituted). Despite this high
CER, a BLEU of 0.843 confirms that most common n-gram
sequences are captured correctly—especially short words and
frequent compound forms. Qualitatively, the model generally
handles Kannada’s agglutinative morphology (e.g., compound
words and vowel diacritics) well under clean or moderately noisy
conditions (SNR> 5 dB), but its performance degrades sharply in
lower SNRs or very long utterances: mid-sentence tokens some-
times drop out, and subtle diacritic distinctions (e.g., aspirated
consonants) can vanish.

By contrast, our Whisper-based fine-tuned system—which
leverages a pretrained multilingual audio–text Transformer and
then adapts it to the same Kannada corpus using identical noise
augmentation, FFT denoizing. The performance metrics are re-
corded in Table V. It is observed that the same and Mel-spectro-
gram extraction achieves a WER of 0.15, a CER of 0.255, and a
BLEU score of 0.912 on that identical test set. Fig. 5 represents a
53% relative reduction in word errors and a 36% relative reduction
in character mistakes compared to the scratch model, along with an
absolute BLEU gain of 0.069. Because Whisper’s backbone was
already trained on vast multilingual data, it retains robust audio–
text alignment priors: low-frequency phonetic combinations, long
compound words, and noisy/background-speech segments (SNR≈
0 dB) are handled with far fewer deletions or substitutions. The
fine-tuned Whisper variant maintains diacritic fidelity and

grammatical consistency even in 15–20 second utterances, where
the from-scratch system might falter.

2). PERFORMANCE OF ASR ON CUSTOM-COLLECTED DATA-
SET. The CNN–Transformer baseline model performs poorly on
the custom real-world 150-sample Kannada dataset, achieving a
WER of 0.7766, a CER of 0.5051, and a BLEU score of 0.3149.
This indicates that nearly 78% of words and 50% of characters in
the test set are misrecognized—primarily due to deletions and
substitutions in noisy, spontaneous, and dialectally diverse speech
segments.

The model struggles with conversational prosody, rapid coar-
ticulation, and diacritic-heavy morphological forms typical of
informal Kannada. Accuracy and F1-score remain low (0.2787
and 0.4359), confirming that the from-scratch architecture lacks the
robustness required to generalize beyond the synthetic augmenta-
tion conditions it was trained on.

By contrast, the fine-tunedWhisper system shows a dramatic
improvement across all metrics given in Table VI, obtaining a
WER of 0.2311, CER of 0.0453, and a BLEU score of 0.6280.
This corresponds to a 70.2% relative reduction in word errors, a
91% reduction in character-level mistakes, and an absolute
BLEU improvement of 0.3131 over the scratch baseline. Whisper
also achieves substantially better token-level reliability, with
precision = 0.7840, recall = 0.8023, and F1 = 0.7933, reflecting
stable performance even under spontaneous pronunciation drift,
natural background noise, and mild dialectal mixing. These gains
can be attributed to Whisper’s multilingual pretraining, which
provides strong priors for consonant-vowel sequences, long
compound words, and rhythm patterns of Indo-Dravidian
languages.

Figure 6 shows the comparison; the Google ASR API yields
WER= 0.2777, CER= 0.0483, and BLEU= 0.5380, with an F1-
score of 0.7367. Although Google ASR performs reasonably well,
Whisper still surpasses it with a 16.8% relative WER reduction and
notably higher BLEU and F1 values, indicating better linguistic
coherence and token-level alignment. The improvement is most
evident in diacritic preservation, optional schwa deletion handling,
and recognition of compound verbs in conversational speech.
Overall, Whisper demonstrates the strongest generalization ability
on the custom dataset, especially in real-world acoustic conditions
where traditional Transformer baselines and commercial ASR
systems show significant degradation.

Fig. 5. Comparison of ASR systems on the FLEURS dataset.

Table V. Performance of ASR using various metrics on FLEURS dataset

System WER ↓ CER ↓ BLEU ↑ Accuracy ↑ Precision ↑ Recall ↑ F1 ↑

Proposed 1 (scratch transformer) 0.2311 0.0453 0.6280 0.6575 0.7840 0.8023 0.7933

Proposed 2 (fine-tuned Whisper) 0.150 0.255 0.912 0.85 0.85 0.85 0.85

Google ASR 0.2777 0.0483 0.5380 0.5827 0.7387 0.7340 0.7367

Table VI. Comparison of ASR systems on the custom-collected Kannada test set

System WER ↓ CER ↓ BLEU ψ Accuracy ψ Precision ψ Recall ψ F1 ψ

Proposed 1 (scratch transformer) 0.7766 0.5051 0.3149 0.2787 0.4208 0.4521 0.4359

Proposed 2 (fine-tuned Whisper) 0.2311 0.0453 0.6280 0.6575 0.7840 0.8023 0.7933

Google ASR 0.2777 0.0483 0.5380 0.5827 0.7387 0.7340 0.7367
1 The best values are given in bold.
2 All values lie in the range [0, 1]. For WER and CER, lower is better; for all other metrics, higher is better.
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C. KEY OBSERVATION

Fine-tuning pays off. Relative to the scratch-built Transformer, the
Whisper model achieves a 70.2% reduction in WER (0.7766 →
0.2311) and a 91.0% reduction in CER. Its BLEU doubles from
0.31 to 0.63, and word-level accuracy increases by a factor of 2.36.
These gains confirm that pretraining on large multilingual corpora
followed by task-specific fine-tuning is considerably more effective
than training a modest-sized network from scratch on 20 k
examples.

Outperforming a strong baseline: Proposed 2 also surpasses
Google ASR on every metric:

• WER: 16.8 % relative reduction (0.2777 → 0.2311).

• BLEU: 16.7 % relative improvement (0.5380 → 0.6280).

• F1: rises from 0.7367 to 0.7933.

This indicates that the domain-specific fine-tuning not only
bridges the gap with a commercial API but also actually yields a
new state-of-the-art for Kannada speech recognition on our
corpus.

Error profile: The scratch Transformer (Proposed 1) suffers
from substitution and deletion errors typical of under-trained
acoustic models, explaining its high WER/CER. Conversely,
Whisper’s attention bottleneck appears to handle long-range
dependencies better, boosting recall without sacrificing precision
and thus lifting the F1-score to 0.79.

Figure 7 shows WER, CER, and BLEU for Transformer,
Whisper, and Google API. From the chart, it is clear that the
fine-tuned Whisper model significantly outperforms both the
scratch baseline and the Google ASR API. Whisper achieves
WER= 0.2311, compared to 0.7766 for the CNN–Transformer
model and 0.2777 for Google ASR, representing a 70.2% relative
improvement over the baseline and 16.8% over Google ASR. CER,
BLEU, precision, recall, and F1-score follow the same trend, with
Whisper showing the highest scores across all metrics.

To validate these gains, we performed bootstrap-based statis-
tical testing. The 95% confidence intervals for Whisper’s WER and
CER did not overlap with those of the baseline or Google ASR,
indicating that the improvements are statistically significant and not
due to chance.

D. ASR PERFORMANCE UNDER NOISE

Our model was specifically designed to handle both noisy envir-
onments and dialectal variation, and we evaluated these aspects
separately. For noise robustness, we tested the models on audio
containing real-world background sounds such as traffic, classroom
disturbances, market noise, and low-SNR speech. WER under
different noise conditions (clean, marketplace, street, and class-
room) is recorded in Fig. 8. The model demonstrates efficient
inference and low memory footprint, making it suitable for deploy-
ment on edge or satellite systems with limited resources. Trans-
former degrades sharply in noisy conditions (WER> 0.80).
Whisper maintains robustness, keeping WER< 0.27 across all
noise profiles. Biggest relative improvement is in marketplace
recordings, showing Whisper’s resilience in real-world chaotic
environments. For dialect robustness, we evaluated the system
on our custom dataset that included speakers from major Kannada
dialect regions—Mysuru, Dharwad, and Bengaluru Urban. Whis-
per consistently produced higher word-level and character-level
accuracy across all dialect groups, whereas the scratch model
struggled with dialect-specific pronunciation shifts (such as vowel
elongation, consonant softening, and regional prosody patterns).

Fig. 6. Comparison of evaluation metrics for all systems for custom
dataset.

Fig. 7. Performance comparison of various ASR tools.

Fig. 8. WER statistics under different noise conditions.
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Whisper’s multilingual pretraining gives it strong phonetic priors,
which helps it adapt better to intra-language variation.

E. USER EXPERIENCE

The system is intuitive to use, with clear visualizations of detection
outputs and user-friendly interfaces. The feedback suggests high
satisfaction due to the tool’s responsiveness and visual clarity as
shown in Table VII.

V. CONCLUSION AND SCOPE FOR
FUTURE WORK

We presented a noise-robust, dialect-aware Kannada ASR system
that integrated a scratch-built CNN–Transformer hybrid and a fine-
tuned Whisper-small model. By combining FFT-based noise
reduction, subword tokenization, and dialect-diverse training,
our approach significantly outperformed both a from-scratch
Transformer and Google’s Speech-to-Text API, achieving a
WER of 0.2311 and CER of 0.0453 on the FLEURS multilingual
Kannada dataset. This represented over a 70% WER reduction
compared to the baseline Transformer and a 16.8% improvement
over a leading commercial API, establishing a new benchmark for
low-resource Kannada ASR. Beyond accuracy, our system dem-
onstrated strong robustness to dialectal variation, code-switching,
and moderate noise levels, while remaining computationally effi-
cient for real-time, edge-based deployment. The open vocabulary
support and streamlined user interface made it practical for inte-
gration into educational, governmental, and accessibility-oriented
platforms.

Despite these gains, FFT’s static noise subtraction can falter in
highly dynamic or unpredictable environments (e.g., bustling
marketplaces and low‐quality microphone setups), and our training
data—though carefully curated—still lacks the full diversity of
dialects, speaker ages, and acoustic contexts found in real‐world
deployments. Future enhancements could therefore incorporate
deep learning-based noise‐suppression techniques such as denoiz-
ing autoencoders, spectral‐masking networks, or neural speech
enhancement models, each of which can adaptively learn complex
noise patterns from raw waveforms. On the data side, expanding
the corpus to include additional Kannada dialects, age groups, and
adverse recording conditions (e.g., far‐field audio and overlapping
speech) will improve generalizability. Advanced augmentation
strategies—like speed perturbation, volume scaling, room‐

impulse‐response simulation, or adversarial noise mixing—could
further bolster robustness during training. Architecturally, migrat-
ing from a conventional Transformer to a Conformer (which blends
convolution with self‐attention) or exploring lightweight, on‐edge
variants of Whisper would allow for longer input sequences, better
fluency in extended‐length speech, and lower‐latency inference on
resource‐constrained devices. Finally, integrating speaker

adaptation modules (e.g., lightweight FiLM layers or meta‐learning
protocols) would enable rapid personalization to new voices,
making our Kannada ASR system even more resilient and widely
applicable in diverse real‐world scenarios. Future work will focus
on expanding the dataset to underrepresented dialects, integrating
adaptive neural noise suppression techniques, and exploring light-
weight Conformer–Whisper variants for ultra-low-latency applica-
tions.We also plan to investigate cross-lingual transfer from related
Dravidian languages to further enhance recognition in truly low-
resource conditions.
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