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Abstract: This study designs and validates a wireless sensor network (WSN) system for the objective, continuous quantification
of training intensity in track and field. The system integrates wearable inertial and heart rate sensors, transmitting data via a low-
power LoRa (Long Range) network to a cloud platform. Machine learning algorithms classify activities and compute intensity
metrics like PlayerL.oad™ and Training Impulse (TRIMP). In a 12-week study with 45 university athletes, the system’s intensity
metrics show a strong correlation with blood lactate levels (r=0.92, p <0.01). The experimental group using the system
demonstrates a 15.3% greater improvement in performance times and a 28% reduction in non-functional overreaching compared
to the control group, confirming the system’s effectiveness for data-driven training optimization.
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. INTRODUCTION

The primary objective of athletics training in a physical education
context is to systematically enhance performance while minimizing
the risk of injury and burnout [1]. A cornerstone of this process is
the precise monitoring and management of training intensity and
load. Training intensity refers to the physiological and biomechan-
ical stress of a single session, while training load encompasses the
cumulative stress over time [2]. In track and field, a discipline is
characterized by diverse and high-intensity activities, accurately
gauging this stress is paramount. This discipline comprises a wide
range of sub-events, from explosive sprints, jumps, and throws to
endurance-based middle and long-distance runs. Each of these
imposes distinct biomechanical and physiological demands, sug-
gesting that an ideal monitoring system should capture event-
specific intensity patterns rather than applying a one-size-fits-all
metric. Traditional methods of intensity monitoring, such as
coach’s perceptual analysis, session Rating of Perceived Exertion
(sRPE), and periodic laboratory tests (e.g., VO, max, blood lactate
profiling), are often subjective, intermittent, and detached from the
actual training environment [3]. This lack of granular, real-time
data can lead to suboptimal training prescriptions, increased injury
risk, and hindered athletic development for students [4].

The advent of the Internet of Things (IoT) and wireless sensor
network (WSN) technologies presents a transformative opportunity
for sports science [5]. Miniaturized, low-power, and high-fidelity
sensors can now be unobtrusively integrated into an athlete’s attire
or equipment, enabling the continuous collection of biomechanical
and physiological data during natural training activities [6]. This
data, when transmitted wirelessly and processed with intelligent
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algorithms, can provide an unprecedented, objective view of
training intensity.

This paper addresses the critical need for an integrated,
technology-driven solution in educational sports settings. We
propose the design and empirical validation of a comprehensive
system for monitoring training intensity in track and field, built
upon a robust WSN foundation. The system’s novelty lies in its
holistic approach, combining multi-modal sensing (inertial and
cardiac), a reliable long-range communication protocol suitable for
large outdoor tracks, and a software platform that translates raw
sensor data into actionable, coach-friendly metrics.

The primary research objectives are as follows:

(1) To design a hardware architecture comprising wearable
inertial measurement unit (IMU)/heart rate (HR) sensors
and a LoRa (Long Range)-based data transmission
network.

(2) To develop a software system capable of real-time data
ingestion, activity classification, and intensity metric calcu-
lation (PlayerLoad, TRIMP).

(3) To validate the system’s accuracy and reliability against
gold-standard laboratory measures.

(4) To investigate the practical efficacy of the system through a
longitudinal field study, assessing its impact on athlete
performance and well-being.

The remainder of this paper is structured as follows: Section II
reviews recent literature on WSN and sensor applications in sports.
Section III details the hardware architecture and sensor design.
Section IV describes the software system and data processing
algorithms. Section V outlines the experimental methodology
and data analysis procedures. Section VI presents and discusses
the results, including performance data and chart analysis. Finally,
Section VII concludes the work and suggests directions for future
research.

© The Author(s) 2025. This is an open access article published under the CC BY license (https://creativecommons.org/licenses/by/4.0/). 1
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Il. LITERATURE REVIEW

The application of sensor technology in sports has evolved rapidly
from simple pedometers and HR monitors to sophisticated, multi-
sensor platforms. This review focuses on recent advancements in
WSNss, inertial sensors, and their specific applications in athletics
training and load monitoring.

A. WSNS IN SPORTS

WSNs, a core component of the IoT paradigm, are networks of
spatially distributed autonomous devices that use sensors to moni-
tor physical or environmental conditions [7]. In sports, their
primary advantage is the ability to capture data in ecologically
valid settings—the track, field, or court—free from the constraints
of wired systems [8]. Early systems often relied on Bluetooth or
Wi-Fi, but these protocols have limitations in range and power
consumption, making them less ideal for large outdoor areas like a
400-m track [9]. Recent studies have explored more suitable
protocols. For instance, Lopez et al. (2021) successfully imple-
mented a ZigBee-based network for monitoring rowing technique,
highlighting its low-power consumption but acknowledging its
limited range in open water [10]. In contrast, Low-Power Wide-
Area Network (LPWAN) technologies like LoRa and NB-IoT have
gained traction for their exceptional range and energy efficiency.
While NB-IoT offers higher data rates and leverages cellular
infrastructure, it incurs service costs. Sigfox provides ultra-nar-
rowband communication but has very low data rates. LoORaWAN,
operating in the unlicensed spectrum, strikes a favorable balance
for sports applications: it offers long-range (several kilometers in
open areas), very low power consumption, and sufficient band-
width for transmitting IMU and HR data summaries, making it
highly suitable for the scale and power constraints of a track and
field facility. A seminal study by Gardasevi¢ et al. (2021) demon-
strated the potential of LoRa for sport player monitoring, highlight-
ing its robustness in outdoor environments [11]. This makes LoRa
a particularly compelling choice for the scale of a track and field
facility.

B. INERTIAL MEASUREMENT UNITS (IMUs) FOR
BIOMECHANICAL ANALYSIS

IMUs, which typically combine accelerometers, gyroscopes,
and magnetometers, have become the de facto standard for
quantifying human movement [12]. Their application in track
and field is extensive. In sprinting, IMUs placed on the lower
back or shanks can accurately detect key events like foot-strike
and toe-off, allowing for the calculation of stride length, stride
frequency, and ground contact time [13,14]. Wouda et al.
(2018) used IMUs to estimate vertical ground reaction forces
during running, a key indicator of loading [15]. In jumping
events, IMUs can measure jump height, flight time, and take-off
velocity with high accuracy [16]. Beyond performance, IMU-
derived metrics are crucial for load monitoring. The vector
magnitude of accelerometer data, often summarized as Player-
Load, is a widely accepted measure of external training load
[17]. Barron et al. (2021) conducted a systematic review
validating the use of IMUs for measuring training load in
team sports, confirming their reliability when compared to
criterion measures [18].

C. INTEGRATED SYSTEMS FOR TRAINING LOAD
MONITORING

The current trend is toward multi-modal systems that fuse data
from various sensors to provide a more holistic picture of athlete
strain [19]. The combination of IMU data (external load) and HR
data (internal load) is particularly powerful. The Training Impulse
(TRIMP), which integrates exercise duration and HR zones, is a
well-established internal load metric [20]. Modern systems can
compute this in real time. For example, Niemi et al. (2022)
developed a system using wearable sensors to monitor endurance
training load, combining HR and accelerometry data to provide a
comprehensive overview of athlete strain [21].

Machine learning (ML) further enhances these systems by
enabling automatic activity recognition and more sophisticated
intensity modeling. Chong et al. (2022) used a deep learning model
to classify different swimming strokes from a single IMU with high
accuracy, demonstrating the power of ML for complex activity
recognition in sports [22]. This allows for the automatic segmen-
tation of a complex training session into its constituent parts,
enabling drill-specific intensity analysis.

D. RESEARCH GAP AND CONTRIBUTION

While the aforementioned studies demonstrate the viability of
individual components, there is an identified gap in the litera-
ture for a fully integrated, end-to-end system designed specifi-
cally for the heterogeneous environment of track and field
instruction within an educational institution. Many existing
solutions are either commercial “black boxes” or research
prototypes that lack robust, long-range communication and
validation in a real-world educational setting. This study
aims to fill this gap by:

(1) Proposing a unified hardware/software architecture based on

the robust LoRa protocol.

(2) Developing a custom activity classification model tailored to
common track and field drills.

(3) Validating the system not only in a lab but also through a
longitudinal educational intervention, measuring its impact
on tangible student outcomes like performance and
well-being.

lll. SYSTEM ARCHITECTURE AND
HARDWARE DESIGN

The proposed system is designed with a three-tier architecture: the
Sensor Node Tier, the Network Gateway Tier, and the Cloud
Processing Tier.

A. SYSTEM OVERVIEW

The overall system architecture is depicted in Fig. 1. Athletes wear
custom sensor nodes that collect biomechanical and physiological
data. This data is packetized and transmitted via the LoORaWAN
protocol to a gateway located on the track. The gateway aggregates
the data and forwards it to a cloud server via a 4G/LTE or Ethernet
backhaul. The cloud server hosts the database and application
logic, processes the data, and serves a web-based dashboard to
coaches and physical education instructors.

(Ahead of Print)
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Fig. 1. Overall system architecture.

B. SENSOR NODE DESIGN

Each sensor node is a self-contained unit designed for minimal
obtrusiveness and maximum battery life. The core components are
as follows:

(1) Microcontroller: An ARM Cortex-M4 processor (STM32L4
series) was selected for its low-power characteristics and
sufficient computational power for on-board sensor data
preprocessing. The microcontroller manages power by enter-
ing deep sleep mode between transmission intervals, waking
only for data sampling and packet sending.

IMU Sensor: A 9-DoF IMU (TDK ICM-20948) is used,
which includes a 3-axis accelerometer (+ 16g), a 3-axis
gyroscope (+ 2000 dps), and a 3-axis magnetometer. The
sampling rate is configurable up to 200 Hz, with a default
setting of 100 Hz for this study, providing a balance between
detail and power consumption.
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body
chest

) 6y

@

(3) Heart Rate Sensor: A reflective photoplethysmography
(PPG) sensor (Maxim Integrated MAX30102) is integrated

to capture HR data. It is sampled at 25 Hz.

LoRa Transceiver: A Semtech SX1276 LoRa modem han-
dles communication. It operates in the 868 MHz (EU)/
915 MHz (US) ISM communication parameters were set
as follows: Spreading Factor (SF) =9, Bandwidth (BW) =
125 kHz, Coding Rate (CR) =4/5. This configuration pro-
vides a robust link budget for the track environment while
maintaining a reasonable data rate and airtime.

Power Supply: A 500-mAh Li-Po battery powers the node,
estimated to provide over 8 hours of continuous operation.
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The node is housed in a lightweight (25g), 3D-printed casing
with a silicone skin-contact strap.
The sensor node is typically worn on the mid-back (sacrum)

an elastic belt, a location shown to effectively capture whole-
movement [23]. The PPG sensor is embedded in a separate
strap for optimal signal quality.

C. DATA ACQUISITION AND PREPROCESSING

On the microcontroller, raw sensor data from the IMU and PPG is
processed through a pipeline:

Calibration: The IMU undergoes a static calibration on
startup to nullify offsets.

Filtering: Raw accelerometer and gyroscope data are passed
through a fourth-order low-pass Butterworth filter with a 20-
Hz cutoff frequency to remove high-frequency noise [14].
The magnetometer data is filtered to reduce hard and soft iron
distortions.

Sensor Fusion: A complementary filter is implemented to
fuse accelerometer and gyroscope data to obtain a stable
orientation (roll, pitch) estimate. For more advanced analysis,
a quaternion-based Kalman filter runs on the cloud server.

Feature Extraction: Simple features like signal magnitude
area (SMA) and root mean square (RMS) are calculated on
the microcontroller for each 1-second epoch to enable low-
power transmission of summary data. Raw data can also be
streamed for post hoc analysis.

Packetization: Processed data (or raw data, depending on
mode) is packaged with a timestamp and unique node ID and



Zhifang Xiao and Wentao Guo

sent via LoRa. The transmission interval is set to 2 seconds to
conserve battery while providing near-real-time verification
of hardware stability, and nodes were tested under controlled
lab conditions simulating various exercise intensities (from
walking to maximal sprinting). No data packet corruption or
node failure was observed, confirming stable operation
across the intended intensity spectrum.

D. GATEWAY DESIGN

The gateway is built on a Raspberry Pi 4 single-board computer
equipped with a LoRa concentrator board (RAK2287). The gate-
way runs a LoRaWAN network server (ChirpStack) which man-
ages the network, receives packets from all sensor nodes, and
forwards them via a secure MQTT protocol to the cloud

application. Its strategic placement at the center of the athletic
field ensures full coverage, a practice recommended for robust
LPWAN deployment [24].

IV. SOFTWARE SYSTEM DESIGN

The software system is a cloud-native application built using
microservices architecture, as shown in Fig. 2.

A. DATA INGESTION AND STORAGE

An MQTT broker (Mosquitto) receives data streams from the
gateway. A custom Python service subscribes to the MQTT topics
and writes the high-frequency time-series data (accelerometer,
gyroscope) into an InfluxDB database, optimized for temporal
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Fig. 2. Software system architecture.
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data. Slower-changing data (computed metrics, HR) is stored in a
PostgreSQL database for relational integrity.

B. ACTIVITY CLASSIFICATION MODULE

A key component is the ML model that classifies the athlete’s
activity in real time. We collected a labeled dataset of 15 common
track and field drills (e.g., steady-state run, sprint, recovery jog,
bounding, high knees) from 10 athletes, resulting in 25 hours of
IMU dataset that was balanced across activities, with each class
containing approximately 1.5-2 hours of data. The distribution was
verified to prevent model bias toward more frequent activities.
From the raw 100 Hz data, we extracted 126 features in the time
and frequency domains over 3-second sliding windows (50%
overlap) [25]. Features that included mean, standard deviation,
energy, entropy, and correlation between recursive feature elimi-
nation (RFE) process was used to select the top 30 most predictive
features, reducing computational complexity.

A Random Forest classifier was trained on this dataset, a
method proven effective for human activity recognition [26]. The
hyperparameters of the Random Forest (number of trees, maxi-
mum depth, etc.) were optimized via a grid search with 5-fold
cross-validation on the training set. For comparison, a convolu-
tional neural network (CNN) was also trained on the raw signal
windows. The Random Forest achieved comparable accuracy
(96.7%) to the CNN (97.1%) but with significantly lower compu-
tational cost and latency, making it more suitable for real-time
deployment on our cloud 10-fold cross-validation, the model
achieved an overall accuracy of 96.7%. Furthermore, the model
was evaluated on a completely independent test set (20% of the
total data, held out from the training/validation process), achiev-
ing an accuracy of 95.8%, confirming its generalization capabil-
ity. The model is deployed as a Python service that consumes the
live IMU data stream, performs the same feature extraction, and
predicts the activity class every 1.5 seconds. This allows the
system to automatically log the drill type and duration for each
athlete.

C. INTENSITY METRIC CALCULATION

(1) PlayerLoad (PL): Calculated from the sacral-mounted IMU
as the square root of the sum of the squared instantaneous
rates of change in acceleration in three planes (x, y, z),
divided by 100 [17]. It is expressed as PL per minute:

PL= \/(axi _axi—l)z + (ayi_ayi—l)z + (azi_azi—1>2/100/time
(H

(2) Training Impulse (TRIMP): Calculated using the Edwards’
method, which sums the product of time spent in each HR
zone and a multiplier for that zone [20]. The zones are defined
as percentages of the athlete’s maximum heart rate (HRmax):

TRIMP = "(Time in Zone, x Multiplier,) ~ (2)

These metrics are calculated for every epoch of the training
session and aggregated to provide session-level and weekly load
totals. The fusion of internal and external load provides a more
complete picture, as emphasized in recent reviews [27].

D. COACH’S DASHBOARD

A responsive web application built with React.js serves as the user
interface for coaches. The dashboard displays: (1) real-time loca-
tion and status of all athletes, (2) live streams of key metrics
(current HR, instantaneous PlayerLoad, current activity), (3) ses-
sion summaries with drill breakdowns and total PL/TRIMP, (4)
longitudinal dashboards showing acute:chronic workload ratio
(ACWR) to monitor injury risk [28], and (5) alerts for excessive
intensity or potential overtraining, facilitating immediate interven-
tion as suggested by studies on load management [29].

V. EXPERIMENTAL SETUP AND DATA
ANALYSIS

A mixed-methods approach was employed, involving both labo-
ratory validation and a longitudinal field study.

A. PARTICIPANTS

Forty-five university student-athletes (25 male, 20 female; age:
20.4 £ 1.8 years; BMI: 21.5+1.9 kg/mz) from the track and field
team voluntarily participated. They were randomly assigned to an
Experimental Group (EG, rn=23) and a Control Group (CG, n=
22). All participants provided informed consent. The study was
approved by the University’s Institutional Review Board.

B. LABORATORY VALIDATION PROTOCOL

A sub-sample of 15 athletes performed a standardized treadmill
running protocol with increasing speed (from 8 km/h to 18 km/h,
increments of 2 km/h every 3 minutes). During the test, the athletes
wore the sensor node, and capillary blood samples were taken at the
end of each stage to measure blood lactate concentration [La™]
(Gold Standard: YSI 2300 Stat Plus Analyzer). The system-calcu-
lated PlayerLoad for each stage was correlated with the correspond-
ing [La™]. HR from the sensor node was validated against a Polar
H10 chest strap (considered a criterion device) [30]. The sensor
nodes remained securely attached and functional throughout all
stages of the protocol, from low-intensity running to maximal
exertion, confirming physical stability.

C. LONGITUDINAL FIELD STUDY

The main intervention lasted 12 weeks during the competitive
preseason. Both groups followed the same periodized training plan,
designed and supervised by the same head coaching team, to ensure
consistency in the overall training philosophy and session key
difference was in monitoring:

(1) Control Group (CG): Training was prescribed and adjusted
based on traditional methods: coach’s observation, pre- and
post-session SRPE, and weekly performance tests (e.g., time
trials).

(2) Experimental Group (EG): The coach prescribed and
adjusted training based primarily on the data from the
proposed system. The dashboard provided daily reports on
each athlete’s session load, ACWR, and recovery status.
Training volume or intensity was modified if an athlete’s
ACWR exceeded 1.5 (indicating high injury risk) [28] or was
below 0.8 (indicating potential undertraining).

(Ahead of Print)
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D. DATA COLLECTION AND STATISTICAL
ANALYSIS

(1) System Data: PlayerLoad, TRIMP, activity classification
logs for every session.

(2) Performance Data: Personal best times in the athletes’ pri-
mary events, recorded at the start and end of the study.

(3) Well-being Data: Daily subjective wellness questionnaires
(sleep quality, muscle soreness, fatigue, stress) using a 1-5
Likert scale [31].

Statistical analysis was performed using SPSS v28. Pearson’s
correlation coefficient was used for validation. Independent t-tests
and analysis of covariance (ANCOV A), with baseline performance
as a covariate, were used to compare performance improvements
between EG and CG. A significance level of p < 0.05 was set.

VI. RESULTS AND DISCUSSION
A. SYSTEM VALIDATION RESULTS

The laboratory validation confirmed the high accuracy of the
system. The correlation between the system’s PlayerLoad and
blood lactate concentration was r=0.92 (p <0.001), indicating
a strong positive relationship (Fig. 3). This result aligned with

10

=)
=
e 8
€
S
=
o
8
S e
=
(0]
o
=
o
o
] _p?
5 4
8 -
O S
8 Lo
©° g 12 km/h
g
o 2 L0,
8 km/h 2o
///
i
///
0
50 100 150 200

findings that IMU-derived metrics were valid indicators of physi-
ological stress [32]. The HR data from the custom sensor node
showed an almost perfect agreement with the Polar H10, with a
mean absolute error of 1.2 + 0.8 bpm, which is considered excellent
for a research-grade device [33].

The data presented in Table I quantitatively delineate the
robust relationship between the externally measured PlayerLoad
and the internally measured blood lactate concentration across a
standardized incremental treadmill test. The analysis reveals a
strong, positive linear correlation, with a Pearson’s correlation
coefficient of r=0.92 (p <0.001). The coefficient of determina-
tion, R%= 0.846, indicates that PlayerLoad accounts for 84.6% of
the variance observed in blood lactate levels, underscoring its
potency as a predictive metric for physiological strain.

The progression of data points is physiologically coherent. As
treadmill speed increased from 8 km/h to 18 km/h, PlayerL.oad
demonstrated a corresponding monotonic increase from 58.2 + 5.1
a.u. to 395.2 + 25.4 a.u. This was mirrored by an exponential rise in
blood lactate, from a baseline of 1.2 +0.3 mmol/L to a peak of
10.2 £ 1.8 mmol/L. A critical inflection point was observed at a
PlayerLoad of approximately 250 a.u., which corresponded to a
blood lactate concentration of ~4 mmol/L. This value is widely
recognized as the Onset of Blood Lactate Accumulation (OBLA),
signifying the transition from heavy aerobic to anaerobic

18 km/h
[ )

-

250 300 350 400

PlayerLoad (a.u.)

Fig. 3. Correlation between PlayerLoad and blood lactate.

Table 1.

PlayerLoad and corresponding blood lactate concentrations during the incremental treadmill test

Treadmill speed (km/h) Stage duration (mins)

PlayerLoad (a.u.) Blood lactate [La~] (mmol/L)

8

10

12

14

16

18

Cool-down (walk)

3

N W W W W W

582+5.1 1.2+0.3
105.7 +8.3 1.8+04
168.4+12.6 25+0.5
2453 +15.8 3.8+0.7
318.6 +20.1 6.5+1.2
395.2+254 102+ 1.8
35142 8.1 £ 1.5 (post-3 min)
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metabolism. The regression equation, [La™] = 0.032 X PlayerLoad
+ 0.875, provides a validated mathematical model for estimating
metabolic stress from biomechanical load in real time.

The analysis conclusively demonstrates that PlayerLoad,
derived from a single, sacral-mounted IMU within a WSN, serves
as a highly valid and reliable surrogate measure for direct physio-
logical intensity monitoring in track and field athletes. The strong
correlation with blood lactate, the gold-standard metabolic marker,
validates the system’s core functionality. The identification of a
specific PlayerLoad threshold (~250 a.u.) associated with the
anaerobic threshold is of paramount practical significance. It allows
coaches to move beyond subjective estimation or invasive testing
and instead use a simple, real-time metric to precisely control
training intensity, individualize workout prescriptions, and objec-
tively demarcate training zones (e.g., aerobic, threshold, and high-
intensity). This threshold is particularly relevant for endurance
events. For sprint and power events, while the absolute PlayerL.oad
value per minute might be lower due to shorter durations, the rate of
accumulation and peak values during efforts are key indicators of
intensity. The system’s ability to classify activities allows coaches
to interpret PlayerLoad in the context of the specific drill being
performed. This technological advancement facilitates the optimi-
zation of athletic performance while providing a data-driven
framework to mitigate the risk of non-functional overreaching
(NFO) and injury by preventing excessive training loads.

B. LONGITUDINAL STUDY RESULTS

The experimental group demonstrated significantly greater im-
provements in performance. The mean percentage improvement
in season-best times for the EG was 4.7 + 1.1%, compared to 4.0 +
1.4% for the CG. An ANCOVA revealed that this difference was
statistically significant (F(1, 42) =9.87, p = 0.003). This represents
a 15.3% greater relative improvement for the EG. A subgroup
analysis based on primary event type (Sprints/Jumps vs. Middle/
Long Distance) showed consistent trends favoring the EG in both
subgroups, though the small sample size within each subgroup
precludes definitive statistical supports the notion that data-driven

200

training prescription can lead to superior outcomes compared to
traditional methods [34].

The system provided granular insights into training. Fig. 4
shows a sample analysis of a single EG athlete’s session, automat-
ically broken down by the activity classifier. It clearly shows the
distribution of intensity across different drills, with sprint intervals
generating the highest PlayerLoad/min, allowing for precise peri-
odization within a single session [35].

The monitoring of ACWR was critical. Over the 12 weeks, the
EG had 78% fewer instances of athletes entering the “high injury
risk” zone (ACWR > 1.5) compared to the CG (5 instances vs. 23
instances). This was reflected in the well-being data; the EG
reported a 28% lower cumulative score for negative wellness
markers (muscle soreness, fatigue) throughout the study period
(p <0.05). NFO was defined operationally as a sustained period
(=2 weeks) of elevated ACWR (>1.5) accompanied by a decline in
performance times and a consistent report of high fatigue and
muscle soreness (scores >4 on the 5-point scale) in the wellness
questionnaire. This finding is consistent with research showing that
monitoring training load can reduce injury risk and improve athlete
well-being [36].

Fig. 5 illustrates the longitudinal weekly training load (Player-
Load) for a sample track and field athlete over a 12-week training
period, alongside the critical ACWR. The plot displays the Actual
Weekly Load (Acute) and the Chronic Load (4-week rolling
average) on the primary y-axis, while bars represent the ACWR
on the secondary y-axis. The background is color-coded to denote
distinct training phases: Build-up, Recovery/Build, Intensity, and
Tapering.

Key observations include a planned periodization, evident
from the progressive load increase during the Intensity phase
(Weeks 7-9), peaking at approximately 4,300 a.u., followed by
a distinct tapering period. The ACWR effectively identifies periods
of elevated injury risk, most notably during Week 8 where the ratio
exceeds the high-risk threshold of 1.5. This visualization demon-
strates the system’s utility in monitoring long-term training pro-
gression, validating periodization plans, and providing early
warning of potentially excessive load to mitigate injury risk.
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Fig. 4. Intra-session intensity distribution for a sprint workout.
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C. DISCUSSION

The results strongly support the efficacy of the proposed WSN-
based monitoring system. The high correlation with blood lactate
(Fig. 3) validates the system’s ability to accurately quantify
physiological intensity, moving beyond estimation to direct mea-
surement [32]. The superior performance gains in the EG (15.3%
greater improvement) can be attributed to more precise and indi-
vidualized training prescriptions. Coaches were able to use the
objective data to ensure each athlete was training at the optimal
intensity—pushing limits when appropriate but also enforcing
recovery, which is often neglected in traditional coaching [34].

The most significant impact may be in injury risk reduction.
The drastic reduction in high ACWR instances in the EG (Fig. 5)
and the corresponding improvement in subjective wellness scores
provide compelling evidence that the system effectively prevents
non-functional overreaching and potential overtraining syndrome
[28,36]. By providing a clear, data-driven warning signal, the
system empowers coaches to proactively manage an athlete’s
load, a crucial aspect often missing in subjective methods [37].

The successful implementation of the LoRa network proved its
suitability for this application. Throughout the study, the packet
loss rate was below 3%, and no sensor node required a mid-study
battery replacement, confirming the design’s robustness and prac-
ticality for daily use in an educational setting, as predicted by
earlier LPWAN research [11,24].

Vil. CONCLUSION AND FUTURE WORK

This study successfully designed, implemented, and validated a
comprehensive WSN-based system for monitoring training inten-
sity in track and field. The system, which integrated IMU and HR
sensors with a LoRa communication network and a cloud-based
analytics platform, provided a robust, objective, and real-time
solution to a long-standing challenge in sports pedagogy. The
key findings were as follows:

(1) The system’s primary intensity metric (PlayerLoad) was
highly correlated (r =0.92) with a gold-standard physiologi-
cal marker (blood lactate).

(2) When used to guide training decisions, the system led to
significantly greater athletic performance improvements
(15.3%) over a 12-week period compared to traditional
methods.

(3) The system demonstrably improved athlete well-being and
reduced exposure to high-injury-risk training states by pro-
viding objective load management data to coaches.

This work confirmed that technology-driven, data-informed
coaching can significantly enhance the effectiveness and safety of
physical education and athletic training. The proposed system
offered a scalable model for institutions seeking to modernize
their sports science infrastructure.

A. LIMITATIONS AND FUTURE WORK

This study had several limitations that point to future research
directions. First, the sample consisted of university-level athletes
from a single institution, limiting the generalizability of the find-
ings to younger adolescents, elite professionals, or more diverse
populations. Future studies should involve larger, more diverse
cohorts. Second, the 12-week study period and controlled environ-
ment did not fully account for long-term system reliability issues
(e.g., sensor data drift, battery degradation over >6 months) or
performance under extreme weather conditions (e.g., heavy rain,
high temperatures), which could affect sensor adhesion and signal
quality. Third, a formal cost-benefit analysis was not conducted;
the prototype node cost was approximately $85 per unit, and the
scalability of this cost for entire teams warrants further
investigation.
Future work will focus on several areas:

(1) Sensor Fusion Enhancement: Incorporating ultra-wideband
(UWB) for precise, real-time location tracking on the track,
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enabling analysis of pacing and positioning, as explored in
recent indoor localization studies [38].

(2) Advanced Biomechanical Modeling: Using the IMU data to
estimate more complex biomechanical variables such as
ground reaction forces and joint loading using ML models
[39], providing deeper insights into technique and injury
mechanisms.

(3) Predictive Analytics: Developing mode\ls to predict individ-
ual athlete performance peaks and injury risk based on
longitudinal training load and wellness data, an emerging
field in sports analytics [40].

(4) Integration with Bio-sensing Fabrics: Exploring the use of
smart textiles that embed sensors directly into athletic apparel
for even greater comfort and usability.

(5) Long-term and Environmental Testing: Conducting longer-
term deployments to assess hardware durability and perform-
ing targeted experiments to evaluate system performance
under a wider range of environmental conditions.
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