Human Activity Recognition in a Realistic and Multiview Environment Based on Two-Dimensional Convolutional Neural Network

Human Activity Recognition in a Realistic and Multiview Environment Based on Two-Dimensional Convolutional Neural Network

Authors

  • Ashish Khare Department of Electronics and Communication, University of Allahabad, Allahabad, India https://orcid.org/0000-0002-1070-877X
  • Arati Kushwaha Department of Electronics and Communication, University of Allahabad, Allahabad, India https://orcid.org/0000-0002-4425-8615
  • Om Prakash Department of Computer Science, HNB Garhwal University, Srinagar, India

DOI:

https://doi.org/10.37965/jait.2023.0163

Keywords:

computational resources, convolutional neural network, GPU memory, human activity recognition, softmax classifier, training parameters

Abstract

Recognition of human activity based on convolutional neural network (CNN) has received the interest of researchers in recent years due to its significant improvement in accuracy. A large number of algorithms based on the deep learning approach have been proposed for activity recognition purpose. However, with the increasing advancements in technologies having limited computational resources, it needs to design an efficient deep learning-based approaches with improved utilization of computational resources. This paper presents a simple and efficient 2-dimensional CNN (2-D CNN) architecture with very small-size convolutional kernel for human activity recognition. The merit of the proposed CNN architecture over standard deep learning architectures is fewer trainable parameters and lesser memory requirement which enables it to train the proposed CNN architecture on low GPU memory-based devices and also works well with smaller as well as larger size datasets. The proposed approach consists of mainly four stages: namely (1) creation of dataset and data augmentation, (2) designing 2-D CNN architecture, (3) the proposed 2-D CNN architecture trained from scratch up to optimum stage, and (4) evaluation of the trained 2-D CNN architecture. To illustrate the effectiveness of the proposed architecture several extensive experiments are conducted on three publicly available datasets, namely IXMAS, YouTube, and UCF101 dataset. The results of the proposed method and its comparison with other state-of-the-art methods demonstrate the usefulness of the proposed method.

Metrics

Metrics Loading ...

Downloads

Published

2023-05-09

How to Cite

Ashish Khare, Arati Kushwaha, & Om Prakash. (2023). Human Activity Recognition in a Realistic and Multiview Environment Based on Two-Dimensional Convolutional Neural Network. Journal of Artificial Intelligence and Technology, 3(3), 100–107. https://doi.org/10.37965/jait.2023.0163

Issue

Section

Research Articles
Loading...