Optimizing the Isolation Forest Algorithm for Identifying Abnormal Behaviors of Students in Education Management Big Data

Optimizing the Isolation Forest Algorithm for Identifying Abnormal Behaviors of Students in Education Management Big Data

Authors

  • Bibo Feng Chongqing University of Technology, Chongqing, China https://orcid.org/0009-0003-9245-7795
  • Lingli Zhang Chongqing University of Technology, Chongqing, China

DOI:

https://doi.org/10.37965/jait.2023.0445

Keywords:

isolated forest algorithm, education abnormal behavior, big data, distinguish

Abstract

With the changes in educational models, applying computer algorithms and artificial intelligence technologies to data analysis in universities has become a research hotspot in the field of intelligent education. In response to the increasing amount of student data in universities, this study proposes to use an optimized isolated forest algorithm for recognizing features to detect abnormal student behavior concealed in big data for educational management. Firstly, it uses a logistic regression algorithm to update the calculation method of isolated forest weights and then uses residual statistics to eliminate redundant forests. Finally, it utilizes discrete particle swarm optimization to optimize the isolated forest algorithm. On this basis, improvements have also been made to the traditional gated loop unit network. It merges the two improved algorithm models and builds an anomaly detection model for collecting college student education data. The experiment shows that the optimized isolated forest algorithm has a recognition accuracy of 0.986 and a training time of 1s. The recognition accuracy of the improved gated loop unit network is 0.965, and the training time is 0.16s. In summary, the constructed model can effectively identify abnormal data of college students, thereby helping educators to detect students’ problems in time and helping students to improve their learning status.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-22

How to Cite

Feng, B., & Zhang, L. (2023). Optimizing the Isolation Forest Algorithm for Identifying Abnormal Behaviors of Students in Education Management Big Data. Journal of Artificial Intelligence and Technology, 4(1), 31–39. https://doi.org/10.37965/jait.2023.0445

Issue

Section

Research Articles
Loading...