A Vision-Based Robotic Navigation Method Using an Evolutionary and Fuzzy Q-Learning Approach

A Vision-Based Robotic Navigation Method Using an Evolutionary and Fuzzy Q-Learning Approach

Authors

  • Roberto Cuesta-Solano Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, México https://orcid.org/0009-0002-6405-1950
  • Ernesto Moya-Albor Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, México https://orcid.org/0000-0002-9637-786X
  • Jorge Brieva Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, México https://orcid.org/0000-0002-5430-8778
  • Hiram Ponce Facultad de Ingeniería, Universidad Panamericana, Augusto Rodin 498, Ciudad de México 03920, México

DOI:

https://doi.org/10.37965/jait.2024.0511

Keywords:

CoppeliaSim, evolutionary algorithm, fuzzy Q-learning, optical flow, reinforced learning, vision-based control navigation

Abstract

The paper presents a fuzzy Q-learning (FQL) and optical flow-based autonomous navigation approach. The FQL method takes decisions in an unknown environment and without mapping, using motion information and through a reinforcement signal into an evolutionary algorithm. The reinforcement signal is calculated by estimating the optical flow densities in areas of the camera to determine whether they are “dense” or “thin” which has a relationship with the proximity of objects. The results obtained show that the present approach improves the rate of learning compared with a method with a simple reward system and without the evolutionary component. The proposed system was implemented in a virtual robotics system using the CoppeliaSim software and in communication with Python.

Metrics

Metrics Loading ...

Downloads

Published

2024-10-10

How to Cite

Cuesta-Solano, R., Moya-Albor, E., Brieva, J., & Ponce, H. (2024). A Vision-Based Robotic Navigation Method Using an Evolutionary and Fuzzy Q-Learning Approach. Journal of Artificial Intelligence and Technology, 4(4), 363–369. https://doi.org/10.37965/jait.2024.0511

Issue

Section

Research Articles
Loading...